22 research outputs found

    Nutrient co‐limitation in the subtropical Northwest Pacific

    Get PDF
    Nutrients limiting phytoplankton growth in the ocean are a critical control on ocean productivity and can underpin predicted responses to climate change. The extensive western subtropical North Pacific is assumed to be under strong nitrogen limitation, but this is not well supported by experimental evidence. Here, we report the results of 14 factorial nitrogen–phosphorus–iron addition experiments through the Philippine Sea, which demonstrate a gradient from nitrogen limitation in the north to nitrogen–iron co-limitation in the south. While nitrogen limited sites responded weakly to nutrient supply, co-limited sites bloomed with up to ~60-fold increases in chlorophyll a biomass that was dominated by initially undetectable diatoms. The transition in limiting nutrients and phytoplankton growth capacity was driven by a gradient in deep water nutrient supply, which was undetectable in surface concentration fields. We hypothesize that this large-scale phytoplankton response gradient is both climate sensitive and potentially important for regulating the distribution of predatory fish

    Nutrient regulation of biological nitrogen fixation across the tropical western North Pacific

    Get PDF
    Nitrogen fixation is critical for the biological productivity of the ocean, but clear mechanistic controls on this process remain elusive. Here, we investigate the abundance, activity, and drivers of nitrogen-fixing diazotrophs across the tropical western North Pacific. We find a basin-scale coherence of diazotroph abundances and N 2 fixation rates with the supply ratio of iron:nitrogen to the upper ocean. Across a threshold of increasing supply ratios, the abundance of nifH genes and N 2 fixation rates increased, phosphate concentrations decreased, and bioassay experiments demonstrated evidence for N 2 fixation switching from iron to phosphate limitation. In the northern South China Sea, supply ratios were hypothesized to fall around this critical threshold and bioassay experiments suggested colimitation by both iron and phosphate. Our results provide evidence for iron:nitrogen supply ratios being the most important factor in regulating the distribution of N 2 fixation across the tropical ocean

    Exploring Variability of Trichodesmium Photophysiology Using Multi-Excitation Wavelength Fast Repetition Rate Fluorometry

    Get PDF
    Fast repetition rate fluorometry (FRRf) allows for rapid non-destructive assessment of phytoplankton photophysiology in situ yet has rarely been applied to Trichodesmium. This gap reflects long-standing concerns that Trichodesmium (and other cyanobacteria) contain pigments that are less effective at absorbing blue light which is often used as the sole excitation source in FRR fluorometers—potentially leading to underestimation of key fluorescence parameters. In this study, we use a multi-excitation FRR fluorometer (equipped with blue, green, and orange LEDs) to investigate photophysiological variability in Trichodesmium assemblages from two sites. Using a multi-LED measurement protocol (447+519+634 nm combined), we assessed maximum photochemical efficiency (Fv/Fm), functional absorption cross section of PSII (σPSII), and electron transport rates (ETRs) for Trichodesmium assemblages in both the Northwest Pacific (NWP) and North Indian Ocean in the vicinity of Sri Lanka (NIO-SL). Evaluating fluorometer performance, we showed that use of a multi-LED measuring protocol yields a significant increase of Fv/Fm for Trichodesmium compared to blue-only excitation. We found distinct photophysiological differences for Trichodesmium at both locations with higher average Fv/Fm as well as lower σPSII and non-photochemical quenching (NPQNSV) observed in the NWP compared to the NIO-SL (Kruskal–Wallis t-test df = 1, p < 0.05). Fluorescence light response curves (FLCs) further revealed differences in ETR response with a lower initial slope (αETR) and higher maximum electron turnover rate ((Formula presented.)) observed for Trichodesmium in the NWP compared to the NIO-SL, translating to a higher averaged light saturation EK (= (Formula presented.) /αETR) for cells at this location. Spatial variations in physiological parameters were both observed between and within regions, likely linked to nutrient supply and physiological stress. Finally, we applied an algorithm to estimate primary productivity of Trichodesmium using FRRf-derived fluorescence parameters, yielding an estimated carbon-fixation rate ranging from 7.8 to 21.1 mgC mg Chl-a–1 h–1 across this dataset. Overall, our findings demonstrate that capacity of multi-excitation FRRf to advance the application of Chl-a fluorescence techniques in phytoplankton assemblages dominated by cyanobacteria and reveals novel insight into environmental regulation of photoacclimation in natural Trichodesmium population

    Upper ocean biogeochemistry of the oligotrophic North Pacific Subtropical Gyre : from nutrient sources to carbon export

    Get PDF
    Subtropical gyres cover 26–29% of the world’s surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N2 fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these euphotic zone layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies

    Effect of Ultrasonic Vibration and Interpass Temperature on Microstructure and Mechanical Properties of Cu-8Al-2Ni-2Fe-2Mn Alloy Fabricated by Wire Arc Additive Manufacturing

    No full text
    A novel ultrasonic vibration assisted (UVA) wire arc additive manufacturing (WAAM) was used to fabricate Cu-8Al-2Ni-2Fe-2Mn alloy in this study. The effect of different interpass temperatures with and without ultrasonic vibration on the microstructural evolution and mechanical properties of the fabricated part were investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), nanoindentation, and mechanical tensile testing. The results showed that reduction of the interpass temperature without UVA treatment cannot prevent the columnar dendrites directionally growing along the deposition direction. Under the UVA treatment, the coarse columnar dendrites were broken at the interpass temperature of 400 &deg;C, and formed a fine cellular structure with an interpass temperature of 100 &deg;C, owing to the acoustic streaming effect and cavitation effect. In addition, globular &kappa;II phase was based on Fe3Al and lamellar &kappa;III phase was based on NiAl distributed in the interdendritic region, whereas &kappa;IV phase (rich-Fe) were precipitated in the &alpha;-Cu matrix. The improvement of microstructural characteristics caused by UVA treatment further improved the tensile properties and nano-hardness of WAAM fabricated parts. Eventually, it is experimentally demonstrated that WAAM fabricated Cu-8Al-2Ni-2Mn-2Fe alloy can obtain high-performance at UVA process under an interpass temperature of 100 &deg;C

    Biogeography of N 2 Fixation Influenced by the Western Boundary Current Intrusion in the South China Sea

    Get PDF
    International audienceThe N 2 fixation and primary production rates were measured simultaneously using 15 N 2 and 13 C incubation assays in the northern South China Sea influenced by the Kuroshio intrusion (KI) seasonally. The degree of KI (KI index, range from 0 to 1) was assessed by applying an isopycnal mixing model. The water column integrated N 2 fixation and primary production for stations with KI index larger than 0.5 were 463 ± 260 ÎŒmol N·m −2 ·day −1 and 62 ± 19 mmol C·m −2 ·day −1 , respectively, significantly higher than those for stations with KI index lower than 0.5 (50 ± 10 ÎŒmol N·m −2 ·day −1 and 28 ± 10 mmol C·m −2 ·day −1 , respectively). Trichodesmium was the dominant diazotroph at stations with KI index larger than 0.5, with 2 orders of magnitude higher nifH gene abundance than that at stations with KI index lower than 0.5. However, the highest N 2 fixation rates were found in waters with moderate KI index around 0.6, suggesting that frontal zone mixing might stimulate N 2 fixation. Our results demonstrated that diazotrophs (mainly Trichodesmium) were tightly associated with the KI, which modulated the biogeographic distribution of N 2 fixers. In summary, we found the transportation of Trichodesmium by KI, then, we quantified the fraction of KI and N 2 fixation rates in the northern South China Sea. The results suggested that KI generated a new biogeographic regime which could significantly influence the carbon and nitrogen cycles far away from the main stream

    Seawater carbonate chemistry and nitrogen fixation by phosphorus-limited Trichodesmium

    No full text
    Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100

    Effect of light on N&lt;sub&gt;2&lt;/sub&gt; fixation and net nitrogen release of &lt;i&gt;Trichodesmium&lt;/i&gt; in a field study

    No full text
    International audienceDinitrogen fixation (NF) by marine cyanobacteria is an important pathway to replenish the oceanic bioavail-able nitrogen inventory. Light is the key to modulating NF; however, field studies investigating the light response curve (NF-I curve) of NF rate and the effect of light on diazotroph-derived nitrogen (DDN) net release are relatively sparse in the literature, hampering prediction using models. A dissolution method was applied using uncontaminated 15 N 2 gas to examine how the light changes may influence the NF intensity and DDN net release in the oligotrophic ocean. Experiments were conducted at stations with diazotrophs dominated by filamentous cyanobacterium Trichodesmium spp. in the western Pacific and the South China Sea. The effect of light on carbon fixation (CF) was measured in parallel using the 13 C tracer method specifically for a station characterized by Trichodesmium bloom. Both NF-I and CF-I curves showed a I k (light saturation coefficient) range of 193 to 315 ”E m −2 s −1 , with light saturation at around 400 ”E m −2 s −1. The proportion of DDN net release ranged from ∌ 6 to ∌ 50 %, suggesting an increasing trend as the light intensity decreased. At the Trichodesmium bloom station , we found that the CF / NF ratio was light-dependent and the ratio started to increase as light was lower than the carbon compensation point of 200 ”E m −2 s −1. Under low-light stress, Trichodesmium physiologically preferred to allocate more energy for CF to alleviate the intensive carbon consumption by respiration; thus, there is a metabolism tradeoff between CF and NF pathways. Results showed that short-term (< 24 h) light change modulates the physiological state, which subsequently determined the C / N metabolism and DDN net release by Trichodesmium. Reallocation of energy associated with the variation in light intensity would be helpful for prediction of the global biogeochemical cycle of N by models involving Trichodesmium blooms

    Phytoplankton community response to episodic wet and dry aerosol deposition in the subtropical North Atlantic

    No full text
    Atmospheric aerosol deposition into the low latitude oligotrophic ocean is an important source of new nutrients for primary production. However, the resultant phytoplankton responses to aerosol deposition events, both in magnitude and changes in community composition, are poorly constrained. Here, we investigated this with 19 d of field and satellite observations for a site in the subtropical North Atlantic. During the observation period, surface dissolved aluminum concentrations alongside satellite-derived aerosol and precipitation data demonstrated the occurrence of both a dry deposition event associated with a dust storm and a wet deposition event associated with strong rainfall. The dry deposition event did not lead to any observable phytoplankton response, whereas the wet deposition event led to an approximate doubling of chlorophyll a, with Prochlorococcus becoming more dominant at the expense of Synechococcus. Bioassay experiments showed that phytoplankton were nitrogen limited, suggesting that the wet deposition event likely provided substantial aerosol-derived nitrogen, thereby alleviating the prevalent nutrient limitation and leading to the rapid observed phytoplankton response. These findings highlight the important role of wet deposition in driving rapid responses in both ocean productivity and phytoplankton community composition
    corecore