473 research outputs found

    QCD Chiral restoration at finite TT under the Magnetic field: Studies based on the instanton vacuum model

    Full text link
    We investigate the chiral restoration at finite temperature (T)(T) under the strong external magnetic field B=B0z^\vec{B}=B_{0}\hat{z} of the SU(2) light-flavor QCD matter. We employ the instanton-liquid QCD vacuum configuration accompanied with the linear Schwinger method for inducing the magnetic field. The Harrington-Shepard caloron solution is used to modify the instanton parameters, i.e. the average instanton size (ρˉ)(\bar{\rho}) and inter-instanton distance (Rˉ)(\bar{R}), as functions of TT. In addition, we include the meson-loop corrections (MLC) as the large-NcN_{c} corrections because they are critical for reproducing the universal chiral restoration pattern. We present the numerical results for the constituent-quark mass as well as chiral condensate which signal the spontaneous breakdown of chiral-symmetry (SBχ\chiS), as functions of TT and BB. Besides we find that the changes for the FπF_\pi and mπm_\pi due to the magnetic field is relatively small, in comparison to those caused by the finite TT effect.Comment: 4 pages, 1 table, 6figs. arXiv admin note: significant text overlap with arXiv:1103.605

    Disordered Critical Wave functions in Random Bond Models in Two Dimensions -- Random Lattice Fermions at E=0E=0 without Doubling

    Get PDF
    Random bond Hamiltonians of the π\pi flux state on the square lattice are investigated. It has a special symmetry and all states are paired except the ones with zero energy. Because of this, there are always zero-modes. The states near E=0E=0 are described by massless Dirac fermions. For the zero-mode, we can construct a random lattice fermion without a doubling and quite large systems ( up to 801×801801 \times 801) are treated numerically. We clearly demonstrate that the zero-mode is given by a critical wave function. Its multifractal behavior is also compared with the effective field theory.Comment: 4 pages, 2 postscript figure

    Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides

    Full text link
    We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that it is stabilized over a wide range of tt and δ\delta. The signature of the state will be peaks in the neutron diffraction spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical conductivity is calculated based on the parameters in the model.Comment: submitted to Phys. Rev. B on January 8, 200

    High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination of <it>CHD </it>(chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of <it>CHD-Z </it>and <it>CHD-W </it>genes is too short to be resolved.</p> <p>Results</p> <p>Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. <it>Spilornis cheela hoya </it>(<it>S. c. hoya</it>) and <it>Pycnonotus sinensis </it>(<it>P. sinensis</it>) were used to illustrate this novel molecular sexing technique. The difference in the length of <it>CHD </it>genes in <it>S. c. hoya </it>and <it>P. sinensis </it>is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of <it>S. c. hoya </it>and in PCR/MCA of <it>S. c. hoya </it>and <it>P. sinensis</it>. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the <it>CHD-Z </it>and <it>CHD-W </it>genes of <it>S. c. hoya</it>, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of <it>S. c. hoya </it>were examined simultaneously and the Tm peaks of <it>CHD-Z </it>and <it>CHD-W </it>PCR products were distinguished.</p> <p>Conclusion</p> <p>In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.</p

    Spin Fidelity for Three-qubit Greenberger-Horne-Zeilinger and W States Under Lorentz Transformations

    Full text link
    Constructing the reduced density matrix for a system of three massive spin12-\frac{1}{2} particles described by a wave packet with Gaussian momentum distribution and a spin part in the form of GHZ or W state, the fidelity for the spin part of the system is investigated from the viewpoint of moving observers in the jargon of special relativity. Using a numerical approach, it turns out that by increasing the boost speed, the spin fidelity decreases and reaches to a non-zero asymptotic value that depends on the momentum distribution and the amount of momentum entanglement.Comment: 12pages, 2 figure

    The order of the metal to superconductor transition

    Full text link
    We present results from large-scale Monte Carlo simulations on the full Ginzburg-Landau (GL) model, including fluctuations in the amplitude and the phase of the matter-field, as well as fluctuations of the non-compact gauge-field of the theory. {}From this we obtain a precise critical value of the GL parameter \kct separating a first order metal to superconductor transition from a second order one, \kct = (0.76\pm 0.04)/\sqrt{2}. This agrees surprisingly well with earlier analytical results based on a disorder theory of the superconductor to metal transition, where the value \kct=0.798/\sqrt{2} was obtained. To achieve this, we have done careful infinite volume and continuum limit extrapolations. In addition we offer a novel interpretation of \kct, namely that it is also the value separating \typeI and \typeII behaviour.<Comment: Minor corrections, present version accepted for publication in PR

    Staggered flux and stripes in doped antiferromagnets

    Full text link
    We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux in the doped two dimensional tJt-J-model. First we consider the properties of uniform systems and then we extend the investigation to include models of striped phases where a fictitious flux is generated in the domain wall providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics of uniform systems with stripes directed along the (10)- and (11)-directions of the lattice, finding that phase-separation generically turns out to be energetically favorable. In addition to the numerical calculations, we present topological arguments relating flux and staggered flux to geometric properties of the spin texture. The calculation is based on a projection of the electron operators of the tJt-J model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure

    Competing Orders in Coupled Luttinger Liquids

    Full text link
    We consider the problem of two coupled Luttinger liquids both at half filling and at low doping levels, to investigate the problem of competing orders in quasi-one-dimensional strongly correlated systems. We use bosonization and renormalization group equations to investigate the phase diagrams, to determine the allowed phases and to establish approximate boundaries among them. Because of the chiral translation and reflection symmetry in the charge mode away from half filling, orders of charge density wave (CDW) and spin-Peierls (SP) diagonal current (DC) and dd-density wave (DDW) form two doublets and thus can be at most quasi-long range ordered. At half-filling, umklapp terms break this symmetry down to a discrete group and thus Ising-type ordered phases appear as a result of spontaneous breaking of the residual symmetries. Quantum disordered Haldane phases are also found, with finite amplitudes of pairing orders and triplet counterparts of CDW, SP, DC and DDW. Relations with recent numerical results and implications to similar problems in two dimensions are discussed.Comment: 16 pages, 5 figures, 4 tables. Revised manuscript; a misprint in Eq. B3 has been corrected. The paper is already in print in PR

    Soft Condensed Matter Physics

    Full text link
    Soft condensed matter physics is the study of materials, such as fluids, liquid crystals, polymers, colloids, and emulsions, that are ``soft" to the touch. This article will review some properties, such as the dominance of entropy, that are unique to soft materials and some properties such as the interplay between broken-symmetry, dynamic mode structure, and topological defects that are common to all condensed matter systems but which are most easily studied in soft systems.Comment: 11 Pages, RevTeX, 7 postscript figures. To appear in Solid State Communication

    DDW Order and its Role in the Phase Diagram of Extended Hubbard Models

    Full text link
    We show in a mean-field calculation that phase diagrams remarkably similar to those recently proposed for the cuprates arise in simple microscopic models of interacting electrons near half-filling. The models are extended Hubbard models with nearest neighbor interaction and correlated hopping. The underdoped region of the phase diagram features dx2y2d_{{x^2}-{y^2}} density-wave (DDW) order. In a certain regime of temperature and doping, DDW order coexists with antiferromagnetic (AF) order. For larger doping, it coexists with dx2y2d_{{x^2}-{y^2}} superconductivity (DSC). While phase diagrams of this form are robust, they are not inevitable. For other reasonable values of the coupling constants, drastically different phase diagrams are obtained. We comment on implications for the cuprates.Comment: 7 pages, 3 figure
    corecore