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Random-bond Hamiltonians of thep flux state on the square lattice are investigated. It has a special
symmetry and all states are paired except the ones with zero energy. Because of this, there are always zero
modes. The states nearE50 are described by massless Dirac fermions. For the zero mode, we can construct
a random lattice fermion without a doubling and quite large systems~up to 8013801) are treated numerically.
We clearly demonstrate that the zero mode is given by a critical wave function. Its multifractal behavior is also
compared with the effective field theory.@S0163-1829~97!06628-9#
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Random critical points intwo dimensionsappear in quan-
tum Hall systems and in systems with spin-orbit coupli
Both critical points have important experimental implic
tions, and both are in the strong coupling limit. Because
that we are still unable to calculate their critical expone
analytically, despite the efforts of more than a decade.
cently, a class of exactly solvable two-dimensional rand
critical points was found.1,2 However, it was pointed out tha
the critical points of Dirac fermion systems with rando
gauge fields contain an infinite number of releva
directions.2 Thus although the theory is exactly solvable
the critical point, it seems that it can never be realized in
or numerical systems. In this paper, however, we find
thep-flux states with bond randomness correspond to D
fermion systems withimaginary random gauge fields. Suc
critical points contain only two relevant directions and c
be reached by fine tuning the two parameters. This re
suggests that the exactly solvable random critical point
Dirac fermion systems probably can be realized in some
dom two-dimensional~2D! systems with Fermi points~such
as graphite and 2Dd-wave superconductors!.

In this paper, we study random-bond models on
square lattice with only nearest-neighbor hopping. The m
els havep flux per plaquette on the average. When all ho
ping matrix elements are real@in this case the model will be
called the random hopping~RH! model#, we find that with
weak randomness and in a continuum approximation,
states near zero energy are described by two copies of D
fermions coupled toimaginary random chemical potentia
real random mass, andimaginarygauge fields. The results i
Refs. 1 and 3 suggest that the continuum model has a lin
random critical points, and due to theimaginarygauge fields
and theimaginarychemical potential, the critical points hav
only one marginally relevant direction if we fix the energy
zero. Thus it could be possible to fine tune parameter
reach the critical line. In fact, the zero-energy states of
fine-tuned model are found to have a multifractal behav
5663-1829/97/56~3!/1061~4!/$10.00
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and are critical.4 We also present direct numerical result
indicating that the zero-energy states in the generic rando
bond model also appear to be critical with multifractal be
haviors at least for the systems of sizes up to 8013801. The
multifractal scaling functionf (a) for the fine-tuned RH
model is calculated numerically, which agrees with the exa
result of the continuum theory.1,2 Another interesting point in
our treatment is that we can avoid the fermion doubling
far as the zero-energy states are concerned.

In one dimension, some of the wave functions of the qu
siperiodic systems show the critical behavior clearly.5 In
two-dimensions, it was difficult to show the criticality clearly
due to the limitation of available system sizes. Howeve
since our models have several specialties as described be
we can treat quite large two-dimensional systems up
8013801, which enables a clear demonstration.

The wave functions in a two-dimensional random syste
are believed to be always localized if the system has tim
reversal symmetry. Thus it is quite interesting that our mo
els have random critical points. There are several reas
why the critical states are allowed in our models in two d
mensions. Our random-bond model has a very special pr
erty that the random Hamiltonian anti-commute with the o
erator g defined below. This means that the eigenstat
always appear in pairs with energiesE and2E. Therefore
the states near zero energy are quite special, and one
wonder if they are critical states or not. We may also co
sider a pure system with a small diagonal hoppingm ~which
breaks the symmetry mentioned above!.6 The symmetry is
recovered by taking a limitm→0. WhenmÞ0, there is an
energy gap nearE50 and there are two energy bands. Th
Hall conductance of the lower band is1sgn(m) and
2sgn(m) for the higher one. Since the nonzero Hall condu
tance is carried by extended states, there are paired exten
states in the lower and the higher bands. By takingm→0,
the paired extended states merge and disappear atE50. This
1061 © 1997 The American Physical Society
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1062 56BRIEF REPORTS
suggests the criticality of theE50 states. Also from a point
of the perturbation theory, the density of states of the pu
state vanishes at zero energy. Therefore a usual treatmen
the perturbative consideration has to be modified. This pro
erty, we believe, is also responsible for the appearance of
critical states at zero energy.

Our Hamiltonian is

H5(
^ i , j &

ci
†t i j cj1H.c., ~1!

where the summation is over the nearest-neighbor bonds.
shall analyze the following two types of random-bond mod
els near the p flux: ~i! random gauge model
t j1 x̂, j5(2) j yeidux( j ), t j1 ŷ, j5eiduy( j ), and ~ii ! random hop-
ping model, t j1 x̂, j5(2) j y1dtx , t j1 ŷ, j511dty . Here
dux,y( j ) anddtx,y are real random variables. Numerical re
sults of the wave functions for these two models are qualit
tively similar. The model~i! belongs to the unitary en-
sembles. The model~ii ! preserves time-reversal symmetry
and belongs to the orthogonal ensembles, which is suita
for a comparison with the critical continuum theory.

In the absence of the randomness, the system is invari
under the translation and the Hamiltonian is written in mo
mentum space:

H05E
2p

p dkx
2p E

0

p dky
2p

ck
†S cosky coskx

coskx 2cosky
Dck , ~2!

with ck
†5(ck

† ,ck1(0,p)
† ). We see that the zero-energy state

formed by the fermions with momentumk15(p/2,p/2) and
k25(2p/2,p/2). Expanding it neark1 and k2, we find in
the continuum approximation thatH0 becomes

H052i E d2xC†F S s1 0

0 2s1
D ]x1S s3 0

0 s3
D ]yGC,

~3!

with C†51/(4p2)*ddkxdkye
2 idkxx2 idkyy(ck1

† ,ck2
† ) and

cj x , j y5( i j x1 j y,i j x2 j y,i2 j x1 j y,i2 j x2 j y)C, where s ’s are the

Pauli matrices. We assume thatC take the same value on
four sites (x,y)5(2m,2n), (2m11,2n), (2m,2n11),
(2m11,2n11). Note that for weak impurities, the state
near zero energy are described by the smooth functi
C(x). Therefore we can derive a continuum theory to de
scribe those states near zero energy.

Before deriving the continuum theory with randomnes
we first study the symmetries of the lattice Hamiltonian
Since the square lattice is bipartite, the transformatio
cj x , j y→cj x , j y8 5(21) j x1 j ycj x , j y induces sign changes of the

Hamiltonian. It is expressed asH(x)→g†H(x)g52H(x),
g5s1^ s1 where H5*d2xC(x)†H(x)C(x) is the con-
tinuum Hamiltonian. The contribution from the randomnes
dH[H2H0 has a formdH5*d2xC†g(x)C if we ignore
the terms containing derivatives. The above conditio
implies that the most general form of theg(x) is
given by a linear combination of the 4 by 4 matrices
g15s2^ I , g25s1^ s2, g352s2^ s1, g45I ^ s2 with
coefficients 2ai(x), i51, . . . ,4. The total Hamiltonian, after
a change of basis to makeg52s3^ I (C5TC8,
T5(I ^ I1 is2^ s1)/A2), is given by
e
of
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e
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-
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nt
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n
-

,
.
n

H5E d2xC8†2~ I ^ s1!S 0 D1

D2 0 DC8, ~4!

D65 i @~]x7a1!s17~]y7a2!s3#6 ia37s2a4 . ~5!

Note that the averaged Hamiltonian is invariant under trans
lation (x,y)→(x11,y). This requires that^ai&50 for
i51,2,3. The averaged Hamiltonian is also invariant unde
reflection (x,y)→(x,2y). This implies that̂ a4&50.

The zero-energy state ofH satisfies

D1c150, D2c250, ~6!

where (c1

c2)5C8. Thus the random-bond model contains two

Dirac fermions in a continuum approximation, which is the
famous fermion doubling of the lattice fermions. It causes
several difficulties in numerical calculations. However, as we
discuss below,we can avoid the doubling as far as the
E50 state is concerned.

Now let us discuss about the doubling that arises from th
lattice models. Since our model is a nearest-neighbor hop
ping model on a bipartite lattice, we can write the Hamil-
tonian as

H5~$c1
† %,$c2

† %!SO D
D† OD S $c1%

$c2%
D , ~7!

where $c1%5$cj x , j yu j x1 j y is even%5$c11 ,c22% is a set

of fermion operators at one of the sublattices (1) and
$c2%5$cj x , j yu j x1 j y is odd%5$c12 ,c21% is the other

(2). Here let us assume a system to beLx3Ly with both
odd Lx and Ly with a fixed boundary condition.@We label
the sites as (1,1),. . . ,(Lx ,Ly).# Then a total number of sites
LxLy5N11N2 is odd with N15N211 where
N15#$1 sites%, N25#$2 sites%. Therefore D is a
N13N25N13(N121) rectangular matrix. The Schro¨-
dinger equation is reduced toDD†f15E2f1 and
D†Df25E2f2 . Any state withEÞ0 has a pair state at
2E as t(f1 ,f2)2E5 t(f1 ,2f2)E . Since det(D†

O
O
D)50

~note thatD is a form ofN13N121), there is always zero
mode. The wave function atE50 satisfies

D†f1
E5050, Df2

E5050. ~8!

Since dimf1
E505N1 , the first one givesN25N121 equa-

tions forN1 variables and there is aone -dimensional non-
vanishing solution.~Therefore this zero mode is not degen-
erate in general.! On the other hand, since
dimf2

E505N25N121, the second one givesN1 equations
for N25N121 variables, this is overdetermined. Therefore
we havef2

E5050.
This gives an important restriction in the continuum

model. It implies

c250 ~9!

in Eq. ~6! since the transformation matrix betweenuC&8’s
and the site operators’UT21U21, only mixes operators
within each sublattices. Therefore there is no degenerac
~doubling! for the E50 state. ThisE50 state is described
by a usual two component spinor. Therefore the independe
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component is not four but two as far as theE50 state is
concerned. We could avoid the doubling by using the ab
special conditions.

Random gauge model. Now let us show numerical result
for the random gauge model. In the previous numerical c
culations for thep flux state with randomness,7 it was not
possible to treat large two-dimensional systems. In
present work, however, we only need the eigenstate o
semipositive definite operatorDD† with zero eigenvalue
This and the fact that theE50 eigenstates are generally n
degenerate enable us to treat large size systems u
8013801. We takedux( i ) andduy( i ) to be uniform random
numbers between2V/2 toV/2. In Fig. 1, the wave function
is shown forV50.2 with a system size of 8013801, where
it is coarse grained over 4 sites on the plaquette. It seem
be neither localized nor extended in the usual manner.
understand the nature of the wave functions, the func
f (a) obtained numerically is also shown. The box size d
pendence is carefully included in the calculations.5 The
maximum off (a) gives a Hausdorf dimension that is alwa
two here since the wave functions are on the square lat
The valuea0, which gives the maximum off (a), gives scal-
ing of the dominant parts of the wave function. It is two f
an extended state that gives uniform nonsingular scaling.
a critical state,a0Þ2 and has a singular scaling.8,9 In our
case, it apparently deviates from 2, which means the z
mode is critical.

Random hopping model. The properties of random Dira
fermion models have been studied in detail recently.
study the random hopping model to make a comparison w
the continuum theory. In the continuum approximation,
fact that dtx,y’s are real further requiresgg(x)g5g(x)* .

FIG. 1. The zero-mode wave function of the random gau
model and the correspondingf (a). The system size is 8013801
andV50.2. The errors by the finite-size corrections in the box si
is about the symbol sizes within the shown region but is large
the other.
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Thus we take the coefficientsai(x), i51, . . . ,4 to bereal.
Note thatD6 happens to be the Hamiltonian of Dirac fermi
ons with imaginary random gauge potentials (a1 ,a2), an
imaginary random chemical potentiala4, and a real random
massa3. Let (a1 ,a2), 2a3, and 2a4 have a Gaussian distri-
bution with widthgA , gV , andgM , respectively. Averaging
over randomness generates four-fermion interactions w
(gA ,gV ,gM) as coupling constants. The one-loopb func-
tions for the above coupling constants are calculated
Ref. 3 as

ġA532gMgV , ~10!

ġV1ġM528~gV2gM !2, ~11!

ġV2ġM528~gV1gM !~gV2gM !28gA~gV2gM !.
~12!

@Note that compared to Ref. 3, we have animaginary ran-
dom chemical potential, a real random mass, and animagi-
nary random gauge potential. Thus theb functions are modi-
fied accordingly with (gA ,gV ,gM)→(2gA ,2gV ,gM).# The
renormalization-group~RG! equation has a fixed line
(gA ,gV ,gM)5(gA ,0,0). Around the fixed line,gV2gM is
irrelevent~notegA.0) and thus we may setgV5gM . In this
casegV1gM does not flow, and nonzerogV1gM will drive
gA→`. Thus the fixed line has at least one~marginally!
relevent direction. Two-fermion operators are also relevan
But those two-fermion operators do not appear sinc
^ai&50, i51, . . . ,4 due to thediscrete symmetries. Because
of the imaginaryrandom gauge potential, the results in Refs
10 and 3 imply that all charge neutral operators are irre
evant, except two-fermion operators and four-fermion oper
tors discussed above. Thus the fixed line has only one m
ginally relevent direction. It suggests that the RH model ha
a line of critical points at zero energy that is described by th
line of critical points in the random Dirac fermion model
Those results further suggest that, once we fix the energy
be zero, there is only one marginally relevant direction fo
the critical line. Thus the critical line in the RH model con
tains two relevant directions. Due to its relation to the ran
dom Dirac fermion model, the critical line in the RH mode
is exactly solvable, and critical exponents can be calculat
exactly.

To describe the critical line, seta35a450. Let us assume
the probability distribution of@a1(r ),a2(r )# is given byP
}exp„2*d2r (1/2gA)@a1

2(r )1a2
2(r )#…, wheregA , character-

izing the strength of the gauge field fluctuations, is exact
marginal. ThusgA can be used to parametrize different criti
cal points on the critical line. In general critical exponent
are functions ofgA .

Note that the energyE couples to an operatorC1
† C1 .

SinceC1 andC1
† belong to two independent Dirac fermion

models described byD1 andD2 , respectively, the scaling
dimension ofC1

† C1 is simply the sum of the scaling dimen-
sions ofC1 andC1

† . From Ref. 10 , we see that the scaling
dimensions ofC1 andC1

† are equal to 1/2, which implies
that the scaling dimension ofC1

† C1 is 1. This means that
the dynamical exponentz51 and the density of states scale
asN(E)}uEu; both exponents are independent ofgA .
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In the continuum theory~5!, the zero-energy state can b
solved exactly.1 Introducing f and x through
am5]mf1emn]nx, one can show that the zero-energy st
~with, for example,g51) is given by

C1}eif1x ~13!

and the probability distribution off and x is given by
P}exp„2*d2r (1/2gA)$@]f(r )#21@]x(r )#2%…. The wave
function ~13! with this distribution was studied in detail i
Refs. 1,2, and was shown to have a multifractal structu
The exact multifractal scaling functionf (a) is defined on
d2<a<d1 and is given by2

f ~a!58
~d12a!~a2d2!

~d12d2!2
, ~14!

where d652(16AgA/2p)2 for gA,2p and
d158AgA/2p, d250 for gA.2p.11 We see that for weak
randomness (gA,2p) f (a) is peaked at

a0521
gA
p
. ~15!

The parametersai(r ) in the continuum model are directl
related to the lattice randomness. We find th
a152Ldt j , j1 x̂(2) j x, a2( j )52Ldt j , j1 ŷ(2) j x1 j y, a3( j )
5Ldt j , j1 x̂(2) j x1 j y, anda4( j )52Ldt j , j1 ŷ(2) j y with a di-
mensional parameterL. Therefore if we chosedt i j to satisfy
dt j , j1 x̂5dt j1 ŷ, j1 ŷ1 x̂ and dt j , j1 ŷ52dt j1 x̂, j1 x̂1 ŷ , then
gV5gM50 and the lattice model will be on the critical line
We used this parametrization and performed a numerical
culation on the above fine-tuned RH model. We setdtx,y as
Gaussian random numbers with a varianceV2 (gA5L2V2).
In Fig. 2, we have plotted a singular scaling functionf (a).
In the calculation,gA is obtained from a value ofa0. The
f (a) obtained from numerical calculation agrees well w
the exact theoretical result Eq.~14!.

In summary, we find that in the continuum approximatio
the RH model at zero energy has a critical line with only o
marginally relevent direction. This analytical result is su
ported by numerical calculations on the fine-tuned R
model. Therefore the RH model is described by the c
tinuum random Dirac fermions as far as critical behavior
concerned. We also find that the zero-energy states of
e
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H
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general random bond models also appear to be critical a
cording to our numerical results. However, the numerica
calculations cannot eliminate the possibility of localization
with huge correlation length~more than 800 lattice spac-
ings!, which may appear in our problem due to the margin
ally relevant direction.
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FIG. 2. Functionsf (a)’s for the zero-mode wave functions of
the RH model: 4013401 andV50.3. The solid line is the analyti-
cal result. The different symbols are for the different randomnes
realizations.
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