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Random-bond Hamiltonians of the flux state on the square lattice are investigated. It has a special
symmetry and all states are paired except the ones with zero energy. Because of this, there are always zero
modes. The states neBr=0 are described by massless Dirac fermions. For the zero mode, we can construct
a random lattice fermion without a doubling and quite large sysi@ms$o 801x 801) are treated numerically.

We clearly demonstrate that the zero mode is given by a critical wave function. Its multifractal behavior is also
compared with the effective field theoy50163-18207)06628-9

Random critical points itwo dimensionsppear in quan- and are criticaf. We also present direct numerical results
tum Hall systems and in systems with spin-orbit coupling.indicating that the zero-energy states in the generic random-
Both critical points have important experimental implica- bond model also appear to be critical with multifractal be-
tions, and both are in the strong coupling limit. Because ohaviors at least for the systems of sizes up t0>88@1. The
that we are still unable to calculate their critical exponentsmyltifractal scaling functionf(a) for the fine-tuned RH
analytically, despite the efforts of more than a decade. Remodel is calculated numerically, which agrees with the exact

cently, a class of exactly solvable two-dimensional randomegyt of the continuum theory? Another interesting point in
critical points was foundi_'. However, it was pointed out that o yreatment is that we can avoid the fermion doubling as
the critical points of Dirac fermion systems with random¢, . o< the zero-energy states are concerned

gauge fields contain an infinite _”“mbef of relevant In one dimension, some of the wave functions of the qua-
d|rect|_o_nsz. Thus although the .theory is exactly s_oIvapIe at iperiodic systems show the critical behavior cledriyn

the cnﬂca] point, it seems th"?‘t it can never be reallzeq n reafwo—dimensions, it was difficult to show the criticality clearly
or numerical systems. In this paper, however, we find tha

the m-flux states with bond randomness correspond to Dirag.ue to the limitation of available system sizes. However,
fermion systems witlimaginary random gauge fields. Such since our models have several spemalﬂgs as described below,
critical points contain only two relevant directions and can'V€ €a@n treat quite large two-dimensional systems up to
be reached by fine tuning the two parameters. This resuff01<801, which enables a clear demonstration.
suggests that the exactly solvable random critical points in The wave functions in a two-dimensional random system
Dirac fermion systems probably can be realized in some rar@re believed to be always localized if the system has time-
dom two-dimensional2D) systems with Fermi point&such reversal symmetry. Thus it is quite interesting that our mod-
as graphite and 2@-wave superconductors els have random critical points. There are several reasons
In this paper, we study random-bond models on thewhy the critical states are allowed in our models in two di-
square lattice with only nearest-neighbor hopping. The modmensions. Our random-bond model has a very special prop-
els haver flux per plaquette on the average. When all hop-erty that the random Hamiltonian anti-commute with the op-
ping matrix elements are refh this case the model will be erator y defined below. This means that the eigenstates
called the random hoppin(RH) model, we find that with  always appear in pairs with energiesand — E. Therefore
weak randomness and in a continuum approximation, thée states near zero energy are quite special, and one may
states near zero energy are described by two copies of Diragonder if they are critical states or not. We may also con-
fermions coupled tamaginary random chemical potential, sider a pure system with a small diagonal hoppimgwhich
real random mass, arichaginarygauge fields. The results in breaks the symmetry mentioned abp¥erhe symmetry is
Refs. 1 and 3 suggest that the continuum model has a line #écovered by taking a limin— 0. Whenm#0, there is an
random critical points, and due to tieaginarygauge fields energy gap neaE=0 and there are two energy bands. The
and theimaginarychemical potential, the critical points have Hall conductance of the lower band issgn{m) and
only one marginally relevant direction if we fix the energy to —sgn(m) for the higher one. Since the nonzero Hall conduc-
zero. Thus it could be possible to fine tune parameters ttance is carried by extended states, there are paired extended
reach the critical line. In fact, the zero-energy states of thestates in the lower and the higher bands. By takimg: 0,
fine-tuned model are found to have a multifractal behaviothe paired extended states merge and disappé&a= at This
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suggests the criticality of thE=0 states. Also from a point
of the perturbation theory, the density of states of the pure H=J d>x¥'2(1®0y)
state vanishes at zero energy. Therefore a usual treatment of
the perturbative consideration has to be modified. This prop-

erty, we believe, is also responsible for the appearance of the

0 D.|

Di=i[(&xial)oli(&yiaz)ag]iia3102a4. (5)

critical states at zero energy. Note that the averaged Hamiltonian is invariant under trans-
Our Hamiltonian is lation (x,y)—(x+1y). This requires that(a;)=0 for
i=1,2,3. The averaged Hamiltonian is also invariant under
H=> ciTti,-chrH.c., (1) reflection &,y)— (x,—y). This imp!ies thata,)=0.
) The zero-energy state of satisfies

where the summation is over the nearest-neighbor bonds. We
shall analyze the following two types of random-bond mod-

els near the 7= flux: (i) random gauge model where (;-)=W'. Thus the random-bond model contains two
tisz;=(—)ve' %) ¢, o =% and (i) random hop- ;

D+¢+:0! Dflﬂf:O! (6)

: i Dirac fermions in a continuum approximation, which is the
L= () B '
ping model tj,5;=(—)v+ol, tj.y;=1+dl,. Here famous fermion doubling of the lattice fermions. It causes

66yy(j) and ét, , are real random variables. Numerical re- e L : i
, ' ) - _several difficulties in numerical calculations. However, as we
sults of the wave functions for these two models are qualita:

! . . ; discuss belowwe can avoid the doubling as far as the
tively similar. The model(i) belongs to the unitary en- .

- - E=0 state is concerned
sembles. The modefii) preserves time-reversal symmetry

o ; Now let us discuss about the doubling that arises from the
and belongs to the orthogonal ensembles, which is Sunabll%ttice models. Since our model is a nearest-neiahbor hop-
for a comparison with the critical continuum theory. ' g P

In the absence of the randomness, the system is invariaBt"¥ model on a bipartite lattice, we can write the Hamil-

under the translation and the Hamiltonian is written in mo_tonlan as
mentum space:

7
fw dky (= dk, T(cosky cok, (7
0— s

—n2m)o 2m " cok, —cok,

) (ﬂk ’ (2)

Oyt

O D)[{c:}
H=({c"}.{c" ,
with lﬂlI:(Cl’CL(o,w))- We see that the zero-energy state isOf fermion operators at one of the sub]attice$)( and
formed by the fermions with momentuky = (7/2,7/2) and  {€-}={Cj, j [ix+]y is odd={c, ,c_.} is the other
k,=(—m/2,7/2). Expanding it neak, andk,, we find in  (—). Here let us assume a system tolbe<L, with both
the sites as (1,1).. . ,(Ly,Ly).] Then a total number of sites
([ pooi[01 O o3 0 LyLy=N,+N_ is odd with N =N_+1 where
Ho=2i [ d™x¥1| —0 0 o5 v, N, =#{+ siteg, N_=#{— siteg. Therefore D is a
_ o dinger equation is reduced tdDD'¢,=E?¢, and
with  W'=1/(47%) [dokyok,e Yy ) and  DIDy_—E24_. Any state withE+0 has a pair state at
c,—X,jyz(in“y,in*Jy,i*Jx“y,i*lx*ly)\lf, where o’s are the —E as (¢, ,¢ ) =" (¢, ,— ¢ )e. Since deffy 5)=0
four sites &,y)=(2m,2n), (2m+1,2n), (2m,2n+1), mode. The wave function &=0 satisfies
(2m+1,2n+1). Note that for weak impurities, the states Eo Eo
near zero energy are described by the smooth function D'¢57°=0, Dp°=0. (8)
. . E:O_ . . _ _ _
scribe those states near zero energy. Since dimp=~"=N. , the first one givedl_=N, —1 equa
Before deriving the continuum theory with randomness,ions forN, variables and there is ane -dimensional non-
we first study the symmetries of the lattice Hamiltonian, Vanishing solution(Therefore this zero mode is not degen-
Ci —>cj’ j :(_1)ix+iycj .. induces sign changes of the d|m¢§=°=N,:N+_—1, the §ec;ond one givebe_zk+ equations
XUy xRy Xy for N_=N, —1 variables, this is overdetermined. Therefore
+ - + '
Hamiltonian. It is expressed &$(x)— v'H(x) y=—H(X), we havegE =0
y=01®0; where H=[d’>x¥(x)TH(x)¥(x) is the con- - :
SH=H—H, has a formsH=[d’>x¥Tg(x)¥ if we ignore model. It implies
the terms containing derivatives. The above condition _
N . =0 9
implies that the most general form of thg(x) is
Y1=0,®1, Y,=01®0,, y3=—0,801, y4=1®0, with  and the site operatorsJT U, only mixes operators
coefficients &;(x), i=1,...,4. The total Hamiltonian, after within each sublattices. Therefore there is no degeneracy
a change of basis to makey=—o031(¥V=TV’, (doubling for the E=0 state. ThisE=0 state is described

where{c+}:{cjx,jy|jx+jy is evey={c,,,c__} is a set

the continuum approximation thét, becomes odd L, andL, with a fixed boundary conditiorfWe label

(3) NyXN_=N,X(N,—1) rectangular matrix. The Schro
Pauli matrices. We assume théit take the same value on (note thatD is a form of N, XN, —1), there is always zero
¥ (x). Therefore we can derive a continuum theory to de-
Since the square lattice is bipartite, the transformatiorff@®__in general. On the other hand, since
tinuum Hamiltonian. The contribution from the randomness This gives an important restriction in the continuum
given by a linear combination of the 4 by 4 matrices:in Eq. (6) since the transformation matrix betweg#)’’s
T=(I®l+io,®04)/2), is given by by a usual two component spinor. Therefore the independent
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2 . . ‘ e : Thus we take the coefficientg(x), i=1,...,4 to bereal.
ra - Note thatD .. happens to be the Hamiltonian of Dirac fermi-
| . * | ons with imaginary random gauge potentialsa{,a,), an
19 f * imaginaryrandom chemical potentia,, and a real random
S + massas. Let (a;,a,), 2a;, and 22, have a Gaussian distri-
1.8 * T bution with widthg,, gy, andgy , respectively. Averaging
N ¥ over randomness generates four-fermion interactions with
17k + i (ga,9v,0m) as coupling constants. The one-logpfunc-
* tions for the above coupling constants are calculated in
= ’ Ref. 3 as
— 16 + </> i
' ] 9a=329uQv, (10
1.5 * ; .
' gv+9u=—8(gv—9m)?, (11
1.4F o+ .
. gv—9w=—8(gv+Im)(Iy—9m) —89da(Iy—9m)-
1.3 i
[Note that compared to Ref. 3, we have iamaginary ran-
1.21 o 17 18 15 2 21 22 23 o4 dom chemical potential, a real random mass, anmmgl-.
nary random gauge potential. Thus tB€unctions are modi-
o fied accordingly with ¢5,9v,9m)—(—9a,—9v,9um).] The

renormalization-group(RG) equation has a fixed line
FIG. 1. The zero-mode wave function of the random gauge(g, gy,gy)=(ga,0,0). Around the fixed linegy,—gy is
model and the correspondirfd«). The system size is 81801 irrelevent(noteg,>0) and thus we may set,=gy . In this
andV=0.2. The errors by the finite-size corrections in the box SizescasegVJrgM does not flow, and nonze,+g,, will drive
is about the symbol sizes within the shown region but is larger ingAHOO Thus the fixed Iin,e has at least ofiarginally

the other. relevent direction. Two-fermion operators are also relevant.
But those two-fermion operators do not appear since
a;)=0,i=1,...,4 due to theliscrete symmetries. Because

f theimaginaryrandom gauge potential, the results in Refs.
10 and 3 imply that all charge neutral operators are irrel-
evant, except two-fermion operators and four-fermion opera-
tors discussed above. Thus the fixed line has only one mar-
inally relevent direction. It suggests that the RH model has
line of critical points at zero energy that is described by the
fine of critical points in the random Dirac fermion model.
Those results further suggest that, once we fix the energy to
be zero, there is only one marginally relevant direction for

component is not four but two as far as the=0 state is
concerned. We could avoid the doubling by using the abov
special conditions.

Random gauge moddllow let us show numerical results
for the random gauge model. In the previous numerical cal
culations for ther flux state with randomnessit was not
possible to treat large two-dimensional systems. In th«-:gl
present work, however, we only need the eigenstate of
semipositive definite operatdbDt with zero eigenvalue.
This and the fact that thE=0 eigenstates are generally not

degenerate enable us to treat large size systems up [Rq criti ; " L

) . ; e critical line. Thus the critical line in the RH model con-
801x 801. We takesf,(i) and 56,(i) to be uniform random  4ins two relevant directions. Due to its relation to the ran-
numbers betweer V/2 to V/2. In Fig. 1, the wave function 44y pirac fermion model, the critical line in the RH model

is shown forV=0.2 with a system size of 8801, where 5 oyactly solvable, and critical exponents can be calculated
it is coarse grained over 4 sites on the plaquette. It seems @actly.
be neither localized nor extended in the usual manner. TO' 14 4escribe the critical line sat=a,=0. Let us assume

understand the nature of the wave functions, the functioqhe probability distribution of a(r),a,(r)] is given by P

f(«) obtained numerically is also shown. The box size de- A2 201} + 32 g
pendence is carefully included in the calculatidn$he exp(-Jd r(1/2gx)[a1(r) +a5(r)]), whereg,, character

; . . : ) izing the strength of the gauge field fluctuations, is exactly
maximum c.’ff(“) gives a Hausqlorf dimension that is alway_s marginal. Thug, can be used to parametrize different criti-
two here since t.he wave func’uon; are on the square Iattlceé‘al points on the critical line. In general critical exponents
The valueag, which gives the maximum df( «), gives scal- are functions ofy
ing of the dominant parts of the wave function. It is two for Note that the Ae.ner ¥ couples to an operatob’ W
an extended state that gives uniform nonsingular scaling. Far. - 4v’ b Ig i tp ind dp ¢ Di +f o
a critical state,ay#2 and has a singular scalifig.In our INCEY . and™, belong 1o two independent Lirac fermion

case, it apparently deviates from 2, which means the Zermodels_descn?ed bp. andD_, respectively, the scaling
mode is critical. dimension ofV' . ¥, is simply the sum of the scaling dimen-

Random hopping modeThe properties of random Dirac sions of¥ and‘lfl . From Ref. 10, we see that the scaling
fermion models have been studied in detail recently. Wedimensions of# , and ¥ are equal to 1/2, which implies
study the random hopping model to make a comparison witithat the scaling dimension of T ¥, is 1. This means that
the continuum theory. In the continuum approximation, thethe dynamical exponert=1 and the density of states scale
fact that 6ty ,'s are real further requiregg(x) y=g(x)*. asN(E)x|E[; both exponents are independentggf.
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In the continuum theory5), the zero-energy state can be 2
solved exactly. Introducing ¢ and x through
a,= d,¢+€,,d,x, one can s.how that the zero-energy state 1.8}
(with, for example,y=1) is given by

_ 16}
P, oceldtx (13
and the probability distribution ofp and y is given by 141
Pocexp(— [d?r(1/2gx){[d¢(r) 1>+ [dx(r)1?}). The wave
function (13) with this distribution was studied in detail in 12T

Refs. 1,2, and was shown to have a multifractal structure. 5
The exact multifractal scaling functiof{«) is defined on = 1
d_<a=d, and is given by

08|
(dy—a)(a—d-)
f(a)=8 d—d7 (14 0.6
where d.=2(1%\ga27)? for ga<2w and 04t
d, =8ga/27, d_=0 for g,>2.1! We see that for weak
randomnessg,<2m) f(a) is peaked at 02
gA f L L L L )
ap=2+ . (15) 97792 14 16 18 2 22 24 26 28 3

o

The parameterg;(r) in the continuum model are directly
related to the lattice randomness. We find that FIG. 2. Functionsf(a)’s for the zero-mode wave functions of
ay=—Adt; .5( _l)jx, a(j)= —Aatj'j+§/(—)j>(.+jy, as(j) the RH model: 4(_)1<401 andv=0.3. The solid Ii_ne is the analyti-
:Agtjﬁ;((_)lxﬂy’ anda,(j)= _Aﬁtj’j+§/(_)Jy with a di- cal _reSL_JIt. The different symbols are for the different randomness
mensional parametet. Therefore if we chosét;; to satisfy realizations.
Oy j+x= Otisgj+y+x and Sty 5=— 6t 5jix+y, then
gv=9m=0 and the lattice model will be on the critical line. general random bond models also appear to be critical ac-
We used this parametrization and performed a numerical catording to our numerical results. However, the numerical
culation on the above fine-tuned RH model. We 8gt, as  calculations cannot eliminate the possibility of localization
Gaussian random numbers with a variah€e(ga=A?V?).  yith huge correlation lengttimore than 800 lattice spac-
In Fig. 2, we have plotted a singular scaling functitfa).  jngg) which may appear in our problem due to the margin-
In the calculationg, is obtained from a value ofy. The ally relevant direction.
f(a) obtained from numerical calculation agrees well with
the exact theoretical result E¢L4). This work was supported in part by Grant-in-Aid from the

In summary, we find that in the continuum approximation, Ministry of Education, Science and Culture of JaganH.,
the RH model at zero energy has a critical line with only oneX.G.W., M.K) and NSF Grant No. DMR-9411574
marginally relevent direction. This analytical result is sup-(X.G.W.). X.G.W. also acknowledges the support from the
ported by numerical calculations on the fine-tuned RHA.P. Sloan Foundation. The computation in this work has
model. Therefore the RH model is described by the conbeen partly done using the facilities of the Supercomputer
tinuum random Dirac fermions as far as critical behavior isCenter, ISSP, University of Tokyo.
concerned. We also find that the zero-energy states of the
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