2,549 research outputs found

    Beam Dynamics Studies and Design Optimisation of New Low Energy Antiproton Facilities

    Get PDF
    Antiprotons, stored and cooled at low energies in a storage ring or at rest in traps, are highly desirable for the investigation of a large number of basic questions on fundamental interactions. This includes the static structure of antiprotonic atomic systems and the time-dependent quantum dynamics of correlated systems. The Antiproton Decelerator (AD) at CERN is currently the worlds only low energy antiproton factory dedicated to antimatter experiments. New antiproton facilities, such as the Extra Low ENergy Antiproton ring (ELENA) at CERN and the Ultra-low energy Storage Ring (USR) at FLAIR, will open unique possibilities. They will provide cooled, high quality beams of extra-low energy antiprotons at intensities exceeding those achieved presently at the AD by factors of ten to one hundred. These facilities, operating in the energy regime between 100 keV down to 20 keV, face several design and beam dynamics challenges, for example nonlinearities, space charge and scattering effects limiting beam life time. Detailed investigations into the low energy and long term beam dynamics have been carried out to address many of those challenges towards the design optimisation. Results from these studies are presented in this contribution, showing some examples for ELENA.Comment: 6 pages, 4 figures, 12th International Conference on Low Energy Antiproton Physics, LEAP 2016. Submitted to JPS Conference Proceeding

    Class A scavenger receptor 1 (MSR1) restricts hepatitis C virus replication by mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells

    Get PDF
    Persistent infections with hepatitis C virus (HCV) may result in life-threatening liver disease, including cirrhosis and cancer, and impose an important burden on human health. Understanding how the virus is capable of achieving persistence in the majority of those infected is thus an important goal. Although HCV has evolved multiple mechanisms to disrupt and block cellular signaling pathways involved in the induction of interferon (IFN) responses, IFN-stimulated gene (ISG) expression is typically prominent in the HCV-infected liver. Here, we show that Toll-like receptor 3 (TLR3) expressed within uninfected hepatocytes is capable of sensing infection in adjacent cells, initiating a local antiviral response that partially restricts HCV replication. We demonstrate that this is dependent upon the expression of class A scavenger receptor type 1 (MSR1). MSR1 binds extracellular dsRNA, mediating its endocytosis and transport toward the endosome where it is engaged by TLR3, thereby triggering IFN responses in both infected and uninfected cells. RNAi-mediated knockdown of MSR1 expression blocks TLR3 sensing of HCV in infected hepatocyte cultures, leading to increased cellular permissiveness to virus infection. Exogenous expression of Myc-MSR1 restores TLR3 signaling in MSR1-depleted cells with subsequent induction of an antiviral state. A series of conserved basic residues within the carboxy-terminus of the collagen superfamily domain of MSR1 are required for binding and transport of dsRNA, and likely facilitate acidification-dependent release of dsRNA at the site of TLR3 expression in the endosome. Our findings reveal MSR1 to be a critical component of a TLR3-mediated pattern recognition receptor response that exerts an antiviral state in both infected and uninfected hepatocytes, thereby limiting the impact of HCV proteins that disrupt IFN signaling in infected cells and restricting the spread of HCV within the liver

    Magnetic helicity transported by flux emergence and shuffling motions in Solar Active Region NOAA 10930

    Full text link
    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from sub-photosphere and the shuffling motions of foot-points of preexisting coronal field lines separately. It is well known that only the velocity component which is perpendicular to the magnetic field (υ⊥B\upsilon_{\perp B}) has contribution to the helicity accumulation. Here, we demonstrate that υ⊥B\upsilon_{\perp B} can be deduced from horizontal motion and vector magnetograms, under a simple relation of υt=μt+υnBnBt\upsilon_t = \mu_t + \frac{\upsilon_n}{B_n} B_t as suggested by Deˊ\acute{e}moulin & Berger (2003). Then after dividing υ⊥B\upsilon_{\perp B} into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectro-Polarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation, the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR, the apparent rotational motion in the following sunspot is the real shuffling motions on solar surface

    Universal measurement of quantum correlations of radiation

    Full text link
    A measurement technique is proposed which, in principle, allows one to observe the general space-time correlation properties of a quantized radiation field. Our method, called balanced homodyne correlation measurement, unifies the advantages of balanced homodyne detection with those of homodyne correlation measurements.Comment: 4 pages, 4 figures, small misprints were corrected, accepted to Phys. Rev. Let

    Quantum-state input-output relations for absorbing cavities

    Full text link
    The quantized electromagnetic field inside and outside an absorbing high-QQ cavity is studied, with special emphasis on the absorption losses in the coupling mirror and their influence on the outgoing field. Generalized operator input-output relations are derived, which are used to calculate the Wigner function of the outgoing field. To illustrate the theory, the preparation of the outgoing field in a Schr\"{o}dinger cat-like state is discussed.Comment: 12 pages, 5 eps figure

    Atomic entanglement near a realistic microsphere

    Get PDF
    We study a scheme for entangling two-level atoms located close to the surface of a dielectric microsphere. The effect is based on medium-assisted spontaneous decay, rigorously taking into account dispersive and absorptive properties of the microsphere. We show that even in the weak-coupling regime, where the Markov approximation applies, entanglement up to 0.35 ebits between two atoms can be created. However, larger entanglement and violation of Bell's inequality can only be achieved in the strong-coupling regime.Comment: 16 pages, 4 figures, Late

    Global Energetics of Thirty-Eight Large Solar Eruptive Events

    Get PDF
    We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between February 2002 and December 2006, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the GOES 1 - 8 A band; (2) the total energy radiated from the soft X-ray (SXR) emitting plasma; (3) the peak energy in the SXR-emitting plasma; (4) the bolometric radiated energy over the full duration of the event; (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV; (6) the kinetic and potential energies of the coronal mass ejection (CME); (7) the energy in solar energetic particles (SEPs) observed in interplanetary space; and (8) the amount of free (nonpotential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ions are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma

    Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode)

    Full text link
    Twisting motions of different nature are observed in several layers of the solar atmosphere. Chromospheric sunspot whorls and rotation of sunspots or even higher up in the lower corona sigmoids are examples of the large scale twisted topology of many solar features. Nevertheless, their occurrence at large scale in the quiet photosphere has not been investigated. The present study reveals the existence of vortex flows located at the supergranular junctions of the quiet Sun. We use a 1-hour and a 5-hour time series of the granulation in Blue continuum and G-band images from FG/SOT to derive the photospheric flows. A feature tracking technique called Balltracking is performed to track the granules and reveal the underlying flow fields. In both time series we identify long-lasting vortex flow located at supergranular junctions. The first vortex flow lasts at least 1 hour and is ~20-arcsec-wide (~15.5 Mm). The second vortex flow lasts more than 2 hours and is ~27-arcsec-wide (~21 Mm).Comment: 4 pages, 10 figure
    • …
    corecore