355 research outputs found
Thermal Characteristics of Douglas-Fir Bark Fiber—25 C to 250 C
To determine if extractives control the thermal properties of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] bark fiber at lower temperatures and limit its utility for reinforcing plastic, fiber and its extractives were subjected to differential scanning calorimetry and thermogravimetric analyses. In addition, the amount and composition of volatiles were measured as a function of temperature and fiber recovery process.Heating bark fiber to 250 C yielded water and carbon dioxide as the major volatiles, the amounts increasing disproportionately as the extractive content of the fiber increased. Because the extractives were thermally less stable than the fiber wall, recovering bark fiber of low extractive content by pressurized refining reduced volatilization more than fiber recovery by atmospheric refining or alkali extraction
The formation of high-field magnetic white dwarfs from common envelopes
The origin of highly-magnetized white dwarfs has remained a mystery since
their initial discovery. Recent observations indicate that the formation of
high-field magnetic white dwarfs is intimately related to strong binary
interactions during post-main-sequence phases of stellar evolution. If a
low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed
by a post-main-sequence giant, the hydrodynamic drag in the envelope of the
giant leads to a reduction of the companion's orbit. Sufficiently low-mass
companions in-spiral until they are shredded by the strong gravitational tides
near the white dwarf core. Subsequent formation of a super-Eddington accretion
disk from the disrupted companion inside a common envelope can dramatically
amplify magnetic fields via a dynamo. Here, we show that these disk-generated
fields are sufficiently strong to explain the observed range of magnetic field
strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary
analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under
PNAS embargo until time of publicatio
Update on the Talent aortic stent-graft: A preliminary report from United States phase I and II trials
AbstractPurpose: Phase I and phase II trials were conducted to determine the safety and efficacy of the Talent aortic stent-graft (Medtronic World Medical, Sunrise, Fla) in the treatment of infrarenal abdominal aortic aneurysms (AAA). This is a preliminary report of the technical results and 30-day clinical outcome of these trials. Methods: Multicenter prospective trials were conducted to test the Talent stent-graft in high-risk and low-risk patient populations with AAA, including phase I feasibility and phase II clinical trials. The low-risk study included concurrent surgical controls. Results: In the phase I trial, deployment success was achieved in 92% (23/25 patients), and initial technical success was 78% (18/23 implants without endoleak). The 30-day technical success rate was 96%, with six endoleaks that resolved spontaneously (without need for further intervention); and the 30-day mortality rate was 12% (3/25 patients). The phase II high-risk trial demonstrated a deployment success of 94% (119/127 patients) and an initial technical success of 86% (102/119 implants). The 30-day technical success rate was 96%, and the 30-day mortality rate was 1.5% (2/127 patients). The phase II low-risk trial included a first-generation and a second-generation Talent stent-graft. Deployment success rates were 97% and 99%, respectively, and technical success rates at 30 days were 97% and 96%, respectively. The 30-day mortality rate was 2% in the phase II low-risk first-generation device trial, and the adverse-event rate was 20%. Corresponding figures for the second-generation device were 0% and 1.8%, respectively. Conclusion: The Talent stent-graft can be deployed successfully and achieves endovascular exclusion in a large proportion of patients with AAA. Morbidity and mortality rates are acceptable. One-year clinical results and the comparison with concurrent surgical control subjects remain to be evaluated. (J Vasc Surg 2001;33:S146-9.
Growth hormone secretion from pituitary cells in chronic renal insufficiency
Growth hormone secretion from pituitary cells in chronic renal insufficiency. To examine whether growth hormone (GH) secretion is adversely affected by chronic renal insufficiency (CRI), the GH secretory response of dispersed anterior pituitary cells perifused with GH-releasing hormone (GHRH) was investigated in 5/6 nephrectomized (CRI, N = 18) and sham-operated (N = 18) rats. Two weeks after nephrectomy, during a period of stable uremia, CRI rats had significantly higher serum concentrations (mean ± SEM) of urea nitrogen and creatinine than sham rats, 16.8 ± 1.4 µmol/liter (47 ± 4 mg/dl) and 79.6 ± 0.0 μmol/liter (0.9 ± 0.0 mg/dl) versus 6.1 ± 0.4µmol/liter (17 ± 1 mg/dl) and 35.4 ± 0.0 µmol/liter (0.4 ± 0.0 mg/dl), respectively (P < 0.0001). Incremental gains in body weight and nose to tail-tip length of CRI rats over two weeks were also significantly depressed, 53.3 ± 5.38 g (CRI) versus 87.0 ± 3.78 g (sham; P < 0.0001) and 3.2 ± 0.2 cm (CRI) versus 3.6 ± 0.1 cm (sham; P < 0.05). The cumulative food intake as well as food efficiency (g food consumed/g weight gain) were also adversely influenced by the uremic state: food intake 304 ± 1 g (CRI) versus 397 ± 6 g (sham; P < 0.0001) and food efficiency 0.173 ± 0.013 g/g of weight gain (CRI) versus 0.219 ± 0.008 g/g of weight gain (sham). No significant difference in GH secretory rate (ng/min/107 cells) was found between the uremic and sham animals under basal conditions, 65.2 ± 2.1 (CRI) and 67.9 ± 2.2 (sham) or in response to GH-releasing hormone, 282.8 ± 42.4 (CRI) versus 306.2 ± 42.6 (sham). The secretory curves representing concentration-GH response were similar in both groups of animals. This study provides direct evidence that the response of pituitary cells to GHRH is preserved in moderate CRI and suggests that, at this degree of renal function reduction, any disturbance of GH secretion must be due to dysfunctions other than the secretory capacity of the pituitary gland itself
SN 2007bg: The Complex Circumstellar Environment Around One of the Most Radio-Luminous Broad-Lined Type Ic Supernovae
In this paper we present the results of the radio light curve and X-ray
observations of broad-lined Type Ic SN 2007bg. The light curve shows three
distinct phases of spectral and temporal evolution, implying that the SNe shock
likely encountered at least 3 different circumstellar medium regimes. We
interpret this as the progenitor of SN 2007bg having at least two distinct
mass-loss episodes (i.e., phases 1 and 3) during its final stages of evolution,
yielding a highly-stratified circumstellar medium. Modelling the phase 1 light
curve as a freely-expanding, synchrotron-emitting shell, self-absorbed by its
own radiating electrons, requires a progenitor mass-loss rate of
\dot{M}~1.9x10^{-6}(v_{w}/1000 km s^{-1}) Solar masses per year for the last
t~20(v_{w}/1000 km s^{-1}) yr before explosion, and a total energy of the radio
emitting ejecta of E\sim1x10^{48} erg after 10 days from explosion. This places
SN 2007bg among the most energetic Type Ib/c events. We interpret the second
phase as a sparser "gap" region between the two winds stages. Phase 3 shows a
second absorption turn-on before rising to a peak luminosity 2.6 times higher
than in phase 1. Assuming this luminosity jump is due to a circumstellar medium
density enhancement from a faster previous mass-loss episode, we estimate that
the phase 3 mass-loss rate could be as high as \dot{M}<~4.3x10^{-4}(v_{w}/1000
km s^{-1}) Solar masses per year. The phase 3 wind would have transitioned
directly into the phase 1 wind for a wind speed difference of ~2. In summary,
the radio light curve provides robust evidence for dramatic global changes in
at least some Ic-BL progenitors just prior (~10-1000 yr) to explosion. The
observed luminosity of this SN is the highest observed for a
non-gamma-ray-burst broad-lined Type Ic SN, reaching L_{8.46 GHz}~1x10^{29} erg
Hz^{-1} s^{-1}, ~567 days after explosion.Comment: 11 pages, 5 figures, accepted for publication in MNRA
A massive, quiescent galaxy at redshift of z=3.717
In the early Universe finding massive galaxies that have stopped forming
stars present an observational challenge as their rest-frame ultraviolet
emission is negligible and they can only be reliably identified by extremely
deep near-infrared surveys. These have revealed the presence of massive,
quiescent early-type galaxies appearing in the universe as early as z2,
an epoch 3 Gyr after the Big Bang. Their age and formation processes have now
been explained by an improved generation of galaxy formation models where they
form rapidly at z3-4, consistent with the typical masses and ages derived
from their observations. Deeper surveys have now reported evidence for
populations of massive, quiescent galaxies at even higher redshifts and earlier
times, however the evidence for their existence, and redshift, has relied
entirely on coarsely sampled photometry. These early massive, quiescent
galaxies are not predicted by the latest generation of theoretical models.
Here, we report the spectroscopic confirmation of one of these galaxies at
redshift z=3.717 with a stellar mass of 1.710 M whose
absorption line spectrum shows no current star-formation and which has a
derived age of nearly half the age of the Universe at this redshift. The
observations demonstrates that the galaxy must have quickly formed the majority
of its stars within the first billion years of cosmic history in an extreme and
short starburst. This ancestral event is similar to those starting to be found
by sub-mm wavelength surveys pointing to a possible connection between these
two populations. Early formation of such massive systems is likely to require
significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely
to the published version. Uploaded 6 months after publication in accordance
with Nature polic
Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies
Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (Ï‚SFR). These results support the notion that the Kennicutt-Schmidt relation arises because Ï‚SFR and the gas surface density (Ï‚g) are connected via the ISM mid-plane pressure
Local positive feedback in the overall negative: the impact of quasar winds on star formation in the FIRE cosmological simulations
Negative feedback from accreting supermassive black holes is regarded as a
key ingredient in suppressing star formation and quenching massive galaxies.
However, several models and observations suggest that black hole feedback may
have a positive effect, triggering star formation by compressing interstellar
medium gas to higher densities. We investigate the dual role of black hole
feedback using cosmological hydrodynamic simulations from the Feedback In
Realistic Environments (FIRE) project, including a novel implementation of
hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy
at (), we show that
strong quasar winds with kinetic power 10 erg/s acting for
20Myr drive the formation of a central gas cavity and can dramatically
reduce the star formation rate surface density across the galaxy disc. The
suppression of star formation is primarily driven by reducing the amount of gas
that can become star-forming, compared to directly evacuating the pre-existing
star-forming gas reservoir (preventive feedback dominates over ejective
feedback). Despite the global negative impact of quasar winds, we identify
several plausible signatures of local positive feedback, including: (1) spatial
anti-correlation of wind-dominated regions and star-forming clumps, (2) higher
local star formation efficiency in compressed gas near the edge of the cavity,
and (3) increased local contribution of outflowing material to star formation.
Stars forming under the presence of quasar winds tend to do so at larger radial
distances. Our results suggest that positive and negative AGN feedback can
coexist in galaxies, but local positive triggering of star formation plays a
minor role in global galaxy growth.Comment: 17 pages, 12 figure
Dense stellar clump formation driven by strong quasar winds in the FIRE cosmological hydrodynamic simulations
We investigate the formation of dense stellar clumps in a suite of
high-resolution cosmological zoom-in simulations of a massive, star forming
galaxy at under the presence of strong quasar winds. Our simulations
include multi-phase ISM physics from the Feedback In Realistic Environments
(FIRE) project and a novel implementation of hyper-refined accretion disk
winds. We show that powerful quasar winds can have a global negative impact on
galaxy growth while in the strongest cases triggering the formation of an
off-center clump with stellar mass , effective radius ,
and surface density . The clump progenitor gas cloud is originally not star-forming, but
strong ram pressure gradients driven by the quasar winds (orders of magnitude
stronger than experienced in the absence of winds) lead to rapid compression
and subsequent conversion of gas into stars at densities much higher than the
average density of star-forming gas. The AGN-triggered star-forming clump
reaches and , converting
most of the progenitor gas cloud into stars in 2\,Myr, significantly
faster than its initial free-fall time and with stellar feedback unable to stop
star formation. In contrast, the same gas cloud in the absence of quasar winds
forms stars over a much longer period of time (35\,Myr), at lower
densities, and losing spatial coherency. The presence of young, ultra-dense,
gravitationally bound stellar clumps in recently quenched galaxies could thus
indicate local positive feedback acting alongside the strong negative impact of
powerful quasar winds, providing a plausible formation scenario for globular
clusters.Comment: 14 pages, 12 figure
- …