7,357 research outputs found

    Metrication study for large space telescope

    Get PDF
    Various approaches which could be taken in developing a metric-system design for the Large Space Telescope, considering potential penalties on development cost and time, commonality with other satellite programs, and contribution to national goals for conversion to the metric system of units were investigated. Information on the problems, potential approaches, and impacts of metrication was collected from published reports on previous aerospace-industry metrication-impact studies and through numerous telephone interviews. The recommended approach to LST metrication formulated in this study cells for new components and subsystems to be designed in metric-module dimensions, but U.S. customary practice is allowed where U.S. metric standards and metric components are not available or would be unsuitable. Electrical/electronic-system design, which is presently largely metric, is considered exempt from futher metrication. An important guideline is that metric design and fabrication should in no way compromise the effectiveness of the LST equipment

    Planning research in the area of launch vehicle and propulsion programs Progress report, 1-31 Mar. 1968

    Get PDF
    Program and report reviews on launch vehicle upper stages and propulsion of advanced reentry spacecraf

    Numerical methods for entrainment and detrainment in the multi-fluid Euler equations for convection

    Get PDF
    Convection schemes are a large source of error in global weather and climate models, and modern resolutions are often too fine to parameterise convection but are still too coarse to fully resolve it. Recently, numerical solutions of multi-fluid equations have been proposed for a more flexible and consistent treatment of sub-grid scale convection, including net mass transport by convection and non-equilibrium dynamics. The technique involves splitting the atmosphere into multiple fluids. For example, the atmosphere could be divided into buoyant updrafts and stable regions. The fluids interact through a common pressure, drag and mass transfers (entrainment and detrainment). Little is known about the numerical properties of mass transfer terms between the fluids. We derive mass transfer terms which relabel the fluids and derive numerical properties of the transfer schemes, including boundedness, momentum conservation and energy conservation on a co-located grid. Numerical simulations of the multi-fluid Euler equations using a C-grid are presented using stable and unstable treatments of the transfers on a well-resolved two-fluid dry convection test case. We find two schemes which are conservative, stable and bounded for large timesteps, and maintain their numerical properties on staggered grids

    Immunosuppressive mechanisms in glioblastoma

    Get PDF
    Despite maximal surgical and medical therapy, the treatment of glioblastoma remains a seriously vexing problem, with median survival well under 2 years and few long-term survivors. Targeted therapy has yet to produce significant advances in treatment of these lesions in spite of advanced molecular characterization of glioblastoma and glioblastoma cancer stem cells. Recently, immunotherapy has emerged as a promising mode for some of the hardest to treat tumors, including metastatic melanoma. Although immunotherapy has been evaluated in glioblastoma in the past with limited success, better understanding of the failures of these therapies could lead to more successful treatments in the future. Furthermore, there is a persistent challenge for the use of immune therapy to treat glioblastoma secondary to the existence of redundant mechanisms of tumor-mediated immune suppression. Here we will address these mechanisms of immunosuppression in glioblastoma and therapeutic approache

    Decision-making processes in the workplace:how exhaustion, lack of resources and job demands impair them and affect performance

    Get PDF
    The present study aims to connect more the I/O and the decision-making psychological domains, by showing how some common components across jobs interfere with decision-making and affecting performance. Two distinct constructs that can contribute to positive workplace performance have been considered: decision-making competency (DMCy) and decision environment management (DEM). Both factors are presumed to involve self-regulatory mechanisms connected to decision processes by influencing performance in relation to work environment conditions. In the framework of the job demands-resources (JD-R) model, the present study tested how such components as job demands, job resources and exhaustion can moderate decision-making processes and performance, where high resources are advantageous for decision-making processes and performance at work, while the same effect happens with low job demands and/or low exhaustion. In line with the formulated hypotheses, results confirm the relations between both the decision-making competences, performance (i.e., in-role and extra-role) and moderators considered. In particular, employees with low levels of DMCy show to be more sensitive to job demands toward in-role performance, whereas high DEM levels increase the sensitivity of employees toward job resources and exhaustion in relation to extra-role performance. These findings indicate that decision-making processes, as well as work environment conditions, are jointly related to employee functioning

    Improved meteorological measurements from buoys and ships (IMET) : preliminary comparison of solar radiation air temperature shields

    Get PDF
    Several different types of solar radiation air temperature shields are evaluated for use at sea on ships and buoys. They include three types of static or Thaller shields, two vane oriented shields, and two fan ventilated shields. A preliminary data analysis is presented and discussed.Funding was provided by the National Science Foundation under Grant No. OCE-87-0961

    Improved meteorological measurements from buoys and ships (IMET) : preliminary comparison of humidity sensors

    Get PDF
    Humidity sensors using various principles of operation are evaluated for the potential use at sea on buoys and ships. Thin film capacitive polymer sensors include the Vaisala Humicap HMP-14U (with WHOI electronics), Hy-Cal Engineerig Ultra-H (also with WHOI electronics), the new Vaisala HMP-35A, and the Rotronic MP-lOOF. Impedance sensors include the Thunder Scientific PC-2101, Phys-Chem PCRC-ll, and the General Eastern 850. The Hygrometrix 8503A is the only organically based cellulose crystallite sensor evaluated. Chilled mirror dew sensors include the EG&G 200M Dewtrak, which was used as a comparative standard, the General Eastern Dew-lO and the WHOI D10IQ Intelligent Dew Point Sensor. The IR-200 infrared optical hygrometer from Ophir is also included in this study. The performance of the EG&G 200M Dewtrak was quite disappointing. Errors of up to 2.5°C in air temperature were observed due to inadequate shielding from solar radiation.Funding was provided by the National Science Foundation under Grant No. OCE-87-09614

    Improved meteorological measurements from buoys and ships (IMET) : preliminary report on barometric pressure sensors

    Get PDF
    Stability tests over periods ranging from 3 to 19 months have been carried out on Paroscientific models 215-AT and 760-15A, AIR DB-1A, Rosemount 1201F1B, Setra 270 and Heise 623 electronic barometers. The Paroscientific barometers had the highest accuracy, stability, and price, and the lowest power consumption. The Rosemount 1201FIB had excellent stability but high power consumption as well as price. The AIR DB-1A and Setra 270 have good stability and moderate power consumption and price. The tests are being expanded to include inexpensive sensors.Funding was provided by the National Science Foundation under Grant No. OCE-87-0961

    Dimensions of Diversity in Human Perceptions of Algorithmic Fairness

    Get PDF
    corecore