448 research outputs found

    The [Rh(Xantphos)]+ catalyzed hydroboration of diphenylacetylene using trimethylamine-borane

    Get PDF
    The rhodium(I) complex [Rh(κ3-P,O,P-Xantphos)(η2-PhC≡CPh)][BArF4] (ArF = 3,5-(CF3)2C6H4) is an effective catalyst for the cis-selective hydroboration of the alkyne diphenylacetylene using the amine-borane H3B·NMe3. Detailed mechanistic studies, that include initial rate measurements, full simulation of temporal profiles for a variety of catalyst and substrate concentrations, and speciation experiments, suggest a mechanism that involves initial coordination of alkyne and a saturation kinetics regime for amine-borane binding. The solid-state molecular structure of a model complex that probes the proposed resting state is also reported, [Rh(κ3-P,O,P-Xantphos)(NCMe)(η2-PhC≡CPh)][BArF4]

    Reversible Encapsulation of Xenon and CH2Cl2 in a Solid-State Molecular Organometallic Framework (Guest@SMOM)

    Get PDF
    Reversible encapsulation of CH2Cl2 or Xe in a non-porous solid-state molecular organometallic framework of [Rh(Cy2PCH2PCy2)(NBD)][BArF4] occurs in single-crystal to single-crystal transformations. These processes are probed by solid-state NMR spectroscopy, including 129Xe SSNMR. Non-covalent interactions with the -CF3 groups, and hydrophobic channels formed, of [BArF4]− anions are shown to be important, and thus have similarity to the transport of substrates and products to and from the active site in metalloenzymes

    The simplest amino‐borane H2B=NH2 trapped on a rhodium dimer : pre‐catalysts for amine–borane dehydropolymerization

    Get PDF
    Funding: The EPSRC (A.S.W. and S.A.M., EP/M024210/1; N.A.B., DTP Studentship), the Rhodes Trust (A.K.), G. M. Adams (G. P. C. analysis).The μ‐amino–borane complexes [Rh2(LR)2(μ‐H)(μ‐H2B=NHR′)][BArF4] (LR=R2P(CH2)3PR2; R=Ph, iPr; R′=H, Me) form by addition of H3B⋅NMeR′H2 to [Rh(LR)(η6‐C6H5F)][BArF4]. DFT calculations demonstrate that the amino–borane interacts with the Rh centers through strong Rh‐H and Rh‐B interactions. Mechanistic investigations show that these dimers can form by a boronium‐mediated route, and are pre‐catalysts for amine‐borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysisPublisher PDFPeer reviewe

    A Neutral Heteroatomic Zintl Cluster for the Catalytic Hydrogenation of Cyclic Alkenes

    Get PDF
    We report on the synthesis of an alkane-soluble Zintl cluster, [η4-Ge9(Hyp)3]Rh(COD), that can catalytically hydrogenate cyclic alkenes such as 1,5-cyclooctadiene and cis-cyclooctene. This is the first example of a well-defined Zintl-cluster-based homogeneous catalyst

    Solid-State Molecular Organometallic Catalysis in Gas/Solid Flow (Flow-SMOM) as Demonstrated by Efficient Room Temperature and Pressure 1-Butene Isomerization

    Get PDF
    The use of solid-state molecular organometallic chemistry (SMOM-chem) to promote the efficient double bond isomerization of 1-butene to 2-butenes under flow-reactor conditions is reported. Single crystalline catalysts based upon the σ-alkane complexes [Rh(R2PCH2CH2PR2)(η2η2-NBA)][BArF4] (R = Cy, tBu; NBA = norbornane; ArF = 3,5-(CF3)2C6H3) are prepared by hydrogenation of a norbornadiene precursor. For the tBu-substituted system this results in the loss of long-range order, which can be re-established by addition of 1-butene to the material to form a mixture of [Rh(tBu2PCH2CH2PtBu2)(cis-2-butene)][BArF4] and [Rh(tBu2PCH2CH2PtBu2)(1-butene)][BArF4], in an order/disorder/order phase change. Deployment under flow-reactor conditions results in very different on-stream stabilities. With R = Cy rapid deactivation (3 h) to the butadiene complex occurs, [Rh(Cy2PCH2CH2PCy2)(butadiene)][BArF4], which can be reactivated by simple addition of H2. While the equivalent butadiene complex does not form with R = tBu at 298 K and on-stream conversion is retained up to 90 h, deactivation is suggested to occur via loss of crystallinity of the SMOM catalyst. Both systems operate under the industrially relevant conditions of an isobutene co-feed. cis:trans selectivites for 2-butene are biased in favor of cis for the tBu system and are more leveled for Cy

    [Rh(C 7

    Full text link

    ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications.</p> <p>Results</p> <p>ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms.</p> <p>Conclusions</p> <p>ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor.</p

    Dehydropolymerization of H3B·NMeH2 Using a [Rh(DPEphos)]+ Catalyst : The Promoting Effect of NMeH2

    Get PDF
    [Rh(κ2-PP-DPEphos){η2η2-H2B(NMe3)(CH2)2tBu}][BArF4] acts as an effective precatalyst for the dehydropolymerization of H3B·NMeH2 to form N-methylpolyaminoborane (H2BNMeH)n. Control of polymer molecular weight is achieved by variation of precatalyst loading (0.1-1 mol %, an inverse relationship) and use of the chain-modifying agent H2: with Mn ranging between 5 500 and 34 900 g/mol and between 1.5 and 1.8. H2 evolution studies (1,2-F2C6H4 solvent) reveal an induction period that gets longer with higher precatalyst loading and complex kinetics with a noninteger order in [Rh]TOTAL. Speciation studies at 10 mol % indicate the initial formation of the amino-borane bridged dimer, [Rh2(κ2-PP-DPEphos)2(μ-H)(μ-H2BN=HMe)][BArF4], followed by the crystallographically characterized amidodiboryl complex [Rh2(cis-κ2-PP-DPEphos)2(σ,μ-(H2B)2NHMe)][BArF4]. Adding ∼2 equiv of NMeH2 in tetrahydrofuran (THF) solution to the precatalyst removes this induction period, pseudo-first-order kinetics are observed, a half-order relationship to [Rh]TOTAL is revealed with regard to dehydrogenation, and polymer molecular weights are increased (e.g., Mn = 40 000 g/mol). Speciation studies suggest that NMeH2 acts to form the precatalysts [Rh(κ2-DPEphos)(NMeH2)2][BArF4] and [Rh(κ2-DPEphos)(H)2(NMeH2)2][BArF4], which were independently synthesized and shown to follow very similar dehydrogenation kinetics, and produce polymers of molecular weight comparable with [Rh(κ2-PP-DPEphos){ η2-H2B(NMe3)(CH2)2tBu}][BArF4], which has been doped with amine. This promoting effect of added amine in situ is shown to be general in other cationic Rh-based systems, and possible mechanistic scenarios are discussed

    Solid-state synthesis and characterization of σ-alkane complexes, [Rh(L2)(η2,η2-C7H12)][BArF4] (L2 = bidentate chelating phosphine)

    Get PDF
    The use of solid/gas and single-crystal to single-crystal synthetic routes is reported for the synthesis and characterization of a number of σ-alkane complexes: [Rh(R2P(CH2)nPR2)(η2,η2-C7H12)][BArF4]; R = Cy, n = 2; R = iPr, n = 2,3; Ar = 3,5-C6H3(CF3)2. These norbornane adducts are formed by simple hydrogenation of the corresponding norbornadiene precursor in the solid state. For R = Cy (n = 2), the resulting complex is remarkably stable (months at 298 K), allowing for full characterization using single-crystal X-ray diffraction. The solid-state structure shows no disorder, and the structural metrics can be accurately determined, while the 1H chemical shifts of the Rh···H–C motif can be determined using solid-state NMR spectroscopy. DFT calculations show that the bonding between the metal fragment and the alkane can be best characterized as a three-center, two-electron interaction, of which σCH → Rh donation is the major component. The other alkane complexes exhibit solid-state 31P NMR data consistent with their formation, but they are now much less persistent at 298 K and ultimately give the corresponding zwitterions in which [BArF4]− coordinates and NBA is lost. The solid-state structures, as determined by X-ray crystallography, for all these [BArF4]− adducts are reported. DFT calculations suggest that the molecular zwitterions within these structures are all significantly more stable than their corresponding σ-alkane cations, suggesting that the solid-state motif has a strong influence on their observed relative stabilities
    corecore