157 research outputs found

    Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    Get PDF
    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine

    Unsteady swirl distortion characteristics for S-ducts using Lattice Boltzmann and time-resolved, stereo PIV methods

    Get PDF
    The unsteady flowfields generated by convoluted aero engine intakes are major sources of instabilities that can compromise the performance of the downstream turbomachinery components. This highlights theneed for high spatial and temporal resolution measurements that will allow a greater understanding of the aerodynamics but also improvements in our current predictive capability for such complex flows. This paper presents the validation of a modern Lattice Boltzmann method (LBM)to predict the unsteady flow and swirl distortion characteristics within a representative S-duct intake.The numerical results are compared against high spatial and temporal resolutionParticle Image Velocimetry(PIV)data for the same S-duct configuration at an inlet Mach number of0.27.The work demonstrates that LBM is broadly able to capture the flow topologies and temporal characteristics with the exception of the magnitude of the unsteady fluctuations which were found to be notably under-predicted compared to the PIV data. Proper Orthogonal Decomposition analysis shows that LBM is able to provide the key flow modes and their spectral distributions which were found broadly in alignment with the PIV data. A statistical assessment of the unsteady distortionhistoryhighlights that LBM can also provide representative distributions of the main swirl distortion descriptors. Overall the work demonstrates that LBM shows promising potential for S-duct unsteady flow predictions which combined with the minimum computational grid requirements, robustness and fast convergence make it an attractive solution for wider use in thearea of unsteady propulsion system aerodynamics

    Student Engagement in Adolescence : A Scoping Review of Longitudinal Studies 2010-2020

    Get PDF
    We systematically mapped and analyzed the longitudinal research on adolescent student engagement published during 2010-2020. A total of 104 studies of 104,304 adolescents met inclusion criteria. Studies were mainly conducted in North America (43%) or Europe (34%). Over half studied engagement across one or more years. Most studies (93%) focused on antecedents of engagement rather than outcomes of engagement (38%). Data were commonly collected using self-report questionnaires (87%) and analyzed using path, growth, and cross-lagged models. Studies mainly examined engagement in classroom activities, school, or schoolwork; and focused on behavioral engagement (70%), followed by emotional (61%), then cognitive engagement (35%). No studies used a specific theory of engagement development, but instead referred to self-determination, ecological systems, and stage-environment fit theories.Peer reviewe

    Road to evolution? Local adaptation to road adjacency in an amphibian (Ambystoma maculatum)

    Get PDF
    The network of roads on the landscape is vast, and contributes a suite of negative ecological effects on adjacent habitats, ranging from fragmentation to contamination by runoff. In addition to the immediate consequences faced by biota living in roaded landscapes, road effects may further function as novel agents of selection, setting the stage for contemporary evolutionary changes in local populations. Though the ecological consequences of roads are well described, evolutionary outcomes remain largely unevaluated. To address these potential responses in tandem, I conducted a reciprocal transplant experiment on early life history stages of a pool-breeding salamander. My data show that despite a strong, negative effect of roadside pools on salamander performance, populations adjacent to roads are locally adapted. This suggests that the response of species to human-altered environments varies across local populations, and that adaptive processes may mediate this response

    Reptile remains from Tiga (Tokanod), Loyalty Islands, New Caledonia

    Get PDF
    Archaeological excavations on Tiga provide the first vouchered herpetological records for this small island between Lifou and Maré in the Loyalty Islands. Eighty-three skeletal elements from four sites yielded material assignable to skinks (Emoia loyaltiensis, Lioscincus nigrofasciolatus), geckos (Bavayia crass i-collis, B. sp., Gehyra georgpotthasti, Nactus pelagicus), and a boid snake (Candoia bihroni) all known from elsewhere in the Loyalties, as well as undetermined material consistent with these and other Loyalties lizards. Diagnostic features of geckos versus skinks for elements commonly recovered from archaeological sites and from owl pellets are discussed. Gehyra georgpotthasti has a limited distribution in the Loyalties and its occurrence on Tiga clarifies its range. The boid snake is the only reptile likely to have been harvested by human inhabitants of Tiga. The presence of gekkonid geckos in pre-European times is confirmed and contrasts with the situation of Grande Terre fossil sites, where only diplodactylid geckos have been recovered. Although it is anticipated that all species recovered from archaeological sites are still present on the island, a modern herpetofaunal survey is needed

    Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Get PDF
    Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P < 0.0001) and predator species (P < 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P < 0.0001) and habitat type (P < 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators

    Who Eats Whom in a Pool? A Comparative Study of Prey Selectivity by Predatory Aquatic Insects

    Get PDF
    Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny
    corecore