580 research outputs found

    Interaction of straw amendment and soil NO3- content controls fungal denitrification and denitrification product stoichiometry in a sandy soil

    Get PDF
    The return of agricultural crop residues are vital to maintain or even enhance soil fertility. However, the influence of application rate of crop residues on denitrification and its related gaseous N emissions is not fully understood. We conducted a fully robotized continuous flow incubation experiment using a Helium/Oxygen atmosphere over 30 days to examine the effect of maize straw application rate on: i) the rate of denitrification, ii) denitrification product stoichiometry N2O/(N2O+N2), and iii) the contribution of fungal denitrification to N2O fluxes. Five treatments were established using sieved, repacked sandy textured soil; i) non-amended control, ii) nitrate only, iii) low rate of straw + nitrate, iv) medium rate of straw + nitrate, and iv) high rate of straw + nitrate (n = 3). We simultaneously measured NO, N2O as well as direct N2 emissions and used the N2O 15N site preference signatures of soil-emitted N2O to distinguish N2O production from fungal and bacterial denitrification. Uniquely, soil NO3− measurements were also made throughout the incubation. Emissions of N2O during the initial phase of the experiment (0–13 days) increased almost linearly with increasing rate of straw incorporation and with (almost) no N2 production. However, the rate of straw amendment was negatively correlated with N2O, but positively correlated with N2 fluxes later in the experimental period (13–30 days). Soil NO3− content, in all treatments, was identified as the main factor responsible for the shift from N2O production to N2O reduction. Straw amendment immediately lowered the proportion of N2O from bacterial denitrification, thus implying that more of the N2O emitted was derived from fungi (18 ± 0.7% in control and up to 40 ± 3.0% in high straw treatments during the first 13 days). However, after day 15 when soil NO3− content decreased to <40 mg NO3−-N kg−1 soil, the N2O 15N site preference values of the N2O produced in the medium straw rate treatment showed a sharp declining trend 15 days after onset of experiment thereby indicating a clear shift towards a more dominant bacterial source of N2O. Our study singularly highlights the complex interrelationship between soil NO3− kinetics, crop residue incorporation, fungal denitrification and N2O/(N2O + N2) ratio. Overall we found that the effect of crop residue applications on soil N2O and N2 emissions depends mainly on soil NO3− content, as NO3− was the primary regulator of the N2O/(N2O + N2) product ratio of denitrification. Furthermore, the application of straw residue enhanced fungal denitrification, but only when the soil NO3− content was sufficient to supply enough electron acceptors to the denitrifiers

    Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use

    Get PDF
    We applied a N-15 dilution technique called Integrated Total Nitrogen Input (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7mg N pot(-1)) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2mgNpot(-1). Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55kgNha(-1)yr(-1). Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5-10kgNha(-1)yr(-1).Peer reviewe

    An illness-focused interactive booklet to optimise management and medication for childhood fever and infections in out-of-hours primary care: study protocol for a cluster randomised trial

    Get PDF
    Background Fever is the most common reason for a child to be taken to a general practitioner (GP), especially during out-of-hours care. It is mostly caused by self-limiting infections. However, antibiotic prescription rates remain high, especially during out-of-hours care. Anxiety and lack of knowledge among parents, and perceived pressure to prescribe antibiotics amongst GPs, are important determinants of excessive antibiotic prescriptions. An illness-focused interactive booklet has the potential to improve this by providing parents with information about fever self-management strategies. The aim of this study is to develop and determine the effectiveness of an interactive booklet on management of children presenting with fever at Dutch GP out-of-hours cooperatives. Methods/design We are conducting a cluster randomised controlled trial (RCT) with 20 GP out-of-hours cooperatives randomised to 1 of 2 arms: GP access to the illness-focused interactive booklet or care as usual. GPs working at intervention sites will have access to the booklet, which was developed in a multistage process. It consists of a traffic light system for parents on how to respond to fever-related symptoms, as well as information on natural course of infections, benefits and harms of (antibiotic) medications, self-management strategies and ‘safety net’ instructions. Children < 12 years of age with parent-reported or physician-measured fever are eligible for inclusion. The primary outcome is antibiotic prescribing during the initial consultation. Secondary outcomes are (intention to) (re)consult, antibiotic prescriptions during re-consultations, referrals, parental satisfaction and reassurance. In 6 months, 20,000 children will be recruited to find a difference in antibiotic prescribing rates of 25% in the control group and 19% in the intervention group. Statistical analysis will be performed using descriptive statistics and by fitting two-level (GP out-of-hours cooperative and patient) random intercept logistic regression models. Discussion This will be the first and largest cluster RCT evaluating the effectiveness of an illness-focused interactive booklet during GP out-of-hours consultations with febrile children receiving antibiotic prescriptions. It is hypothesised that use of the booklet will result in a reduced number of antibiotic prescriptions, improved parental satisfaction and reduced intention to re-consult

    Steviamine, a new class of indolizidine alkaloid [(1R,2S,3R,5R,8aR)-3-hydroxy­meth­yl-5-methyl­octa­hydro­indolizine-1,2-diol hydro­bromide]

    Get PDF
    X-ray crystallographic analysis of the title hydro­bromide salt, C10H20N+·Br−, of (1R,2S,3R,5R,8aR)-3-hydroxy­meth­yl-5-methyl­octa­hydro­indolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxy­lated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae) leaves. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯Br and N—H⋯Br hydrogen bonds, forming double chains around the twofold screw axes along the b-axis direction. Intra­molecular O—H⋯O inter­actions occur

    Modification of turbulent dissipation rates by a deep Southern Ocean eddy

    Get PDF
    The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, mid-depth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy, but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray-tracing approximation is employed asa heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows

    Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry

    Get PDF
    RATIONALE Nitrous oxide (N2O), a highly climate-relevant trace gas, is mainly derived from microbial denitrification and nitrification processes in soils. Apportioning N2O to these source processes is a challenging task, but better understanding of the processes is required to improve mitigation strategies. The N2O site-specific 15?N signatures from denitrification and nitrification have been shown to be clearly different, making this signature a potential tool for N2O source identification. We have applied for the first time quantum cascade laser absorption spectroscopy (QCLAS) for the continuous analysis of the intramolecular 15?N distribution of soil-derived N2O and compared this with state-of-the-art isotope ratio mass spectrometry (IRMS). METHODS Soil was amended with nitrate and sucrose and incubated in a laboratory setup. The N2O release was quantified by FTIR spectroscopy, while the N2O intramolecular 15?N distribution was continuously analyzed by online QCLAS at 1?Hz resolution. The QCLAS results on time-integrating flask samples were compared with those from the IRMS analysis. RESULTS The analytical precision (2 sigma) of QCLAS was around 0.3 parts per thousand for the delta 15Nbulk and the 15?N site preference (SP) for 1-min average values. Comparing the two techniques on flask samples, excellent agreement (R2?=?0.99; offset of 1.2 parts per thousand) was observed for the delta 15Nbulk values while for the SP values the correlation was less good (R2?=?0.76; offset of 0.9 parts per thousand), presumably due to the lower precision of the IRMS SP measurements. CONCLUSIONS These findings validate QCLAS as a viable alternative technique with even higher precision than state-of-the-art IRMS. Thus, laser spectroscopy has the potential to contribute significantly to a better understanding of N turnover in soils, which is crucial for advancing strategies to mitigate emissions of this efficient greenhouse gas. Copyright (c) 2012 John Wiley & Sons, Ltd
    • …
    corecore