

Interaction of straw amendment and soil NO3- content controls fungal denitrification and denitrification product stoichiometry in a sandy soil

Senbayram, Mehmet; Well, Reinhard; Bol, Roland; Chadwick, David R.; Jones, David L.; Wu, Di

Soil Biology and Biochemistry

DOI: 10.1016/j.soilbio.2018.09.005

Published: 01/11/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Senbayram, M., Well, R., Bol, R., Chadwick, D. R., Jones, D. L., & Wu, D. (2018). Interaction of straw amendment and soil NO3- content controls fungal denitrification and denitrification product stoichiometry in a sandy soil. *Soil Biology and Biochemistry*, *126*, 204-212. https://doi.org/10.1016/j.soilbio.2018.09.005

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Interaction of straw amen	dment and soil NO ₃ ⁻ content controls fungal						
2	denitrification and denitrifica	ation product stoichiometry in a sandy soil						
3								
4	Mehmet Senbayram ^{a,b} , Reinhard We	ell ^a , Roland Bol ^c , David R. Chadwick ^d , David L. Jones ^{d,e} , Di						
5	Wu ^{d,*}							
6								
7	^a Thünen Institute of Climate-Smar	rt Agriculture, Federal Research Institute for Rural Areas,						
8	Forestry and Fisheries, Bundesallee 65, 38116 Braunschweig, Germany							
9	^b Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, 63000,							
10	Sanliurfa, Turkey							
11	^c Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH,							
12	52425 Jülich, Germany							
13	^d School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK							
14	^e UWA School of Agriculture and Er	wironment, University of Western Australia, Crawley, WA						
15	6009, Australia							
16								
17								
18	Corresponding author:	Di Wu						
19	Corresponding author address:	School of Natural Sciences,						
20		Bangor University, Bangor, Gwynedd, LL57 2UW, UK						
21	Corresponding author Tel:	+44 1248 383062						
22	Corresponding author E-mail:	w.di@fz-juelich.de						
23								

24 Abstract

25 The return of agricultural crop residues are vital to maintain or even enhance soil fertility. However, 26 the influence of application rate of crop residues on denitrification and its related gaseous N 27 emissions is not fully understood. We conducted a fully robotized continuous flow incubation experiment using a Helium/Oxygen atmosphere over 30 days to examine the effect of maize straw 28 29 application rate on: i) the rate of denitrification, ii) denitrification product stoichiometry (N₂O/N₂O+N₂ ratio), and iii) the contribution of fungal denitrification to N₂O fluxes. Five 30 treatments were established using sieved, repacked sandy textured soil; i) non-amended control, ii) 31 32 nitrate only, iii) low rate of straw + nitrate, iv) medium rate of straw + nitrate, and iv) high rate of straw + nitrate (n=3). We simultaneously measured NO, N₂O as well as direct N₂ emissions and 33 used the N₂O ¹⁵N site preference signatures of soil-emitted N₂O to distinguish N₂O production 34 from fungal and bacterial denitrification. Uniquely, soil NO₃⁻ measurements were also made 35 throughout the incubation. Emissions of N₂O during the initial phase of the experiment (0-13 days) 36 37 increased almost linearly with increasing rate of straw incorporation and with (almost) no N_2 production. However, the rate of straw amendment was negatively correlated with N_2O , but 38 positively correlated with N₂ fluxes later in the experimental period (13-30 days). Soil NO_3^- content, 39 40 in all treatments, was identified as the main factor responsible for the shift from N₂O production to N_2O reduction. Straw amendment immediately lowered the proportion of N_2O from bacterial 41 denitrification, thus implying that more of the N_2O emitted was derived from fungi (18±0.7% in 42 43 control and up to 40±3.0% in high straw treatments during the first 13 days). However, after day 15 when soil NO₃⁻ content decreased to <40 mg NO₃⁻-N kg⁻¹ soil, the N₂O ¹⁵N site preference 44 values of the N₂O produced in the medium straw rate treatment showed a sharp declining trend 15 45 days after onset of experiment thereby indicating a clear shift towards a more dominant bacterial 46 source of N₂O. Our study singularly highlights the complex interrelationship between soil NO_3^{-1} 47

48 kinetics, crop residue incorporation, fungal denitrification and $N_2O/(N_2O+N_2)$ ratio. Overall we 49 found that the effect of crop residue applications on soil N_2O and N_2 emissions depends mainly on 50 soil NO_3^- content, as NO_3^- was the primary regulator of the $N_2O/(N_2O+N_2)$ product ratio of 51 denitrification. Furthermore, the application of straw residue enhanced fungal denitrification, but 52 only when the soil NO_3^- content was sufficient to supply enough electron acceptors to the 53 denitrifiers.

54

Keywords: Organic carbon; Denitrification product ratio; Greenhouse gas; Nitrogen cycling; Site
preference

58 **1. Introduction**

Nitrous oxide (N₂O) is a potent greenhouse gas with ca. 300 fold higher global warming potential 59 60 than carbon dioxide (CO₂) and is also involved in the destruction of the stratospheric ozone layer (Ravishankara et al., 2009). Globally, soils are the largest anthropogenic source of N_2O , which is 61 produced by several microbial and chemical processes (Butterbach-Bahl et al., 2013). Increasing 62 evidence suggests that biological denitrification (fungal and bacterial) is the dominant process 63 responsible for the soil-driven increase in atmospheric N_2O (Baggs, 2011). Microbial 64 denitrification includes all or parts of the sequential reduction of NO_3^- to NO_2^- , NO, N₂O and N₂. 65 which occurs under oxygen limited situations in soil (e.g., high water-filled pore space) (Weier et 66 al., 1993). Due to the large background N₂ concentration in air and the large spatial and temporal 67 68 heterogeneity of N₂ production, fluctuations in soil-borne N₂ fluxes are hard to determine. Therefore, a comprehensive and quantitative understanding of the controlling factors of 69 denitrification in soil is still missing (Davidson and Seitzinger, 2006; Butterbach-Bahl et al., 2013). 70

Soil carbon (C) availability is one of the most critical factors regulating denitrification rate, as labile 71 72 C is the electron donor for all of the reduction steps from NO_3^- to N_2 (Burford and Bremner, 1975). 73 Most laboratory studies have tested the effect of readily available C substrates (e.g. glucose) on denitrification pathways and its product stoichiometry (Weier et al., 1993; Meijide et al., 2010; 74 Giles et al., 2017; Wu et al., 2017), however, only a few studies have used complex plant/animal 75 76 residues (Miller et al., 2008; Köster et al., 2015). Straw incorporation in agricultural soils can 77 improve soil quality (e.g. porosity, water-holding capacity, cation exchange capacity), increase land productivity and helps to sequester more C. However, concerns have also been raised about 78 the effect of straw addition on soil N₂O emissions, as both positive and negative influences have 79 80 been reported (Pan et al., 2017; Koebke et al., 2018; Xiao et al., 2018). This discrepancy may be

partly because, in addition to many other factors (e.g. moisture, oxygen, pH, temperature), labile 81 82 soil C content alters the relative availability of reductant vs. oxidant compounds, which in turn also affects the final end products of denitrification, i.e. NO, N₂O or N₂. The higher ratio of electron 83 donors (available organic C)/acceptors (N oxides) as a result of organic matter application to soil 84 may favor N₂O reduction (Smith and Arah, 1990) due to electron donor abundance (Hutchinson 85 and Davidson, 1993). The common hypothesis is that additional labile C amendment could promote 86 denitrification rates in moist soils (Zhong et al., 2018) and also may enhance elemental N₂ losses 87 via promoting sequential reduction of NO₃, NO₂, NO and N₂O to N₂ (Smith and Arah, 1990; 88 Hutchinson and Davidson, 1993; Mathieu et al., 2006). Although a number of studies have 89 90 indicated that N₂O emissions from soils can be lowered under conditions favoring N₂O reduction to N_2 (Firestone, 1982; Weier et al., 1993), it is still not clear how straw application in conjunction 91 92 with mineral fertilizer would affect both production and reduction rate of N_2O . Furthermore, the $N_2O/(N_2O+N_2)$ product ratio of denitrification is regulated by the complex interrelationship 93 between a number of soil parameters, e.g. NO₃⁻ concentration, available C content and O₂ 94 availability (Blackmer and Bremner, 1978; Senbayram et al., 2012). For example, several studies 95 have shown that higher soil NO_3^- concentration in soil can inhibit N₂O reductase activity, since 96 NO_3 is preferred over N₂O as a terminal electron acceptor (Firestone, 1982; Weier et al., 1993; 97 98 Qin et al., 2017b). In this context, it is still not yet clear whether the amendment of soil with labile C would directly promote N₂O reduction to N₂ or whether its effect on the N₂O/(N₂O+N₂) product 99 100 ratio depends on other soil parameters, e.g. NO₃⁻ content.

In addition to bacteria, fungi are also capable of denitrification and N₂O production. Denitrifying
fungi generally lack N₂O reductase, thus the gaseous emission from fungi is in the form of N₂O
rather than N₂ (Laughlin et al., 2002). The possibility of significant contributions of fungi to soil
N₂O production has been demonstrated in several studies, which reported fungal contributions of

between 40% and 89% of the emitted N₂O in different terrestrial ecosystems (Laughlin et al., 2002; Chen et al., 2014; Zhong et al., 2018). Since several studies have shown that organic C supply in moist soils could increase both fungal/bacterial biomass ratio and fungal N₂O production (Laughlin et al., 2002; Hayden et al., 2012; Zhong et al., 2018), we hypothesize that fungal denitrification may be a dominant source for N₂O emission in NO₃⁻ rich, crop residue amended, moist soil.

The different enzyme types of bacteria and fungi are known to produce a different intramolecular ^{15}N distribution in the linear asymmetric N₂O molecule, so-called ^{15}N site preference (SP). It has been found that the SP value of N₂O produced by bacterial denitrification ranges from -9‰ to +9‰, whereas nitrification and fungal denitrification produce N₂O with a SP range from +34‰ to +40‰ (Toyoda et al., 2017). This non-destructive, low cost gas sampling approach has been used previously to distinguish the different sources of N₂O production pathways in both lab and field scale studies (Decock and Six, 2013; Rohe et al., 2017).

117 Direct measurements of small amounts of N_2 produced from denitrification in soils are challenging due to the high atmospheric N₂ background and a lack of sufficiently sensitive equipment. Various 118 approaches have been used to indirectly measure N₂ production from soil, e.g. the commonly used 119 acetylene inhibition technique (Weier et al., 1993; Miller et al., 2008) and ¹⁵N isotope labeling (Cai 120 et al., 2001). However, neither are ideal, introducing their own artifacts (Terry and Duxbury, 1985; 121 122 Groffman et al., 2006; Nadeem et al., 2013). In recent years, several automated soil incubation systems have been established for continuous direct N_2 measurement, based on the replacement of 123 the soil atmosphere by He (Bol et al., 2003; Cardenas et al., 2003; Molstad et al., 2007; Liu et al., 124 2010; Köster et al., 2013; Qin et al., 2017b). In this study, we conducted our incubation experiment 125 with a newly-designed fully robotic continuous flow incubation system (ROFLOW) that enables 126 us to determine directly very low (≥ 10 g N₂-N ha⁻¹) soil N₂ fluxes using sealed vessels and steel 127

components (<10 ppm N₂ background concentration). Furthermore, the system is uniquely
equipped with a filter membrane at the base for soil water sampling and moisture adjustment (Fig.
1), which allows simultaneous monitoring of soil NO₃⁻ dynamics during experiments.

We studied a sandy textured arable soil with low ammonium (NH_4^+) content and examined i) 131 whether or not there is a potential for higher N₂O emission when straw in conjunction with nitrate 132 (NO₃⁻) based fertilizer is incorporated into soil, ii) does the straw amendment directly regulate the 133 N₂O/N₂O+N₂ product ratio of denitrification, and iii) will the straw amendment increase the 134 contribution of fungal denitrification to N₂O fluxes? This was achieved through the use of a unique 135 experimental platform that allowed online simultaneous measurements of NO, N₂O and N₂ fluxes, 136 and soil water sampling for NO_3^{-} . Furthermore, we coupled this with N_2O isotopomer 137 measurements to distinguish N₂O production between fungal and bacterial denitrification. 138

139

140 **2. Materials and methods**

141 *2.1. Soil*

The soil was collected from farmland in Fuhrberg, Lower Saxony, Germany (52° 33' 6" N, 9° 50' 142 49" E). Winter wheat had been grown prior to soil sampling. The sandy textured soil was classified 143 144 as a Gleyic Podzol (sand 90.1%, silt 3.1%, clay 5.9%) and contained 0.1% total N, 0.5 mg NH₄⁺-N kg⁻¹ soil, 43.7 mg NO₃⁻-N kg⁻¹ soil and 1.8% organic carbon with a pH of 5.6 (H₂O). The upper 145 5 cm of soil and roots were removed and soil was collected from the first 10 cm below the removed 146 layer. The soil was sieved to <10 mm, air-dried and stored at 4 °C before packing into cores. Prior 147 to the experiment, soil was wetted to ca. 40% water holding capacity (WHC) for a week and stored 148 149 at room temperature to minimize the drving-wetting effect.

150 2.2. Robotized soil incubation experiment and trace gas measurements

151 The incubation experiment was carried out at Thünen Institute of Climate-Smart Agriculture Braunschweig, Germany in the ROFLOW system using a make-up atmosphere containing 80% He 152 153 and 20% O_2 (Köster et al., 2013). The cylindrical incubation vessels consisted of acrylic glass with 154 an inner diameter of 140 mm and 150 mm height. Each incubation vessel was equipped with a polyamide filter membrane (EcoTech, Bonn, Germany - hydrophilic; pore size 0.45 µm) at the 155 156 bottom, which allowed adjustment of the soil moisture and the removal of the soil water samples. 157 The experiment consisted of five treatments (n=3); i) non-amended control treatment (CK) with no 158 addition, ii) treated with 20 mmol KNO₃ (KNO₃), iii) low rate of straw + 20 mmol KNO₃ (LS+N), iv) medium rate of straw + KNO₃ (MS+N) and iv) high rate of straw + KNO₃ (HS+N). The pre-159 160 incubated soils were mixed by hand with 1, 2.5 or 5 g kg⁻¹ dry soil maize straw (0.78% total N and 44.05% total C) in the LS+N, MS+N, and HS+N treatments, respectively prior to the experiment 161 and 1 kg dry soil was packed into each vessel (with a density of 1.25 g cm⁻³). Oven-dried maize 162 straw was ground through a 2 mm mesh sieve for homogeneity. By applying a vacuum from the 163 top of each vessel, the repacked soil cores were flooded from the bottom of the vessels with either 164 20 mmol KNO₃ solution (in KNO₃, LS+N, MS+N, and HS+N) or distilled water (in CK) and then 165 166 drained to 28.3% gravimetric water content (67% WFPS) by applying a vacuum to the ceramic plate. The incubation vessels were then sealed and the atmospheric air in the vessels was replaced 167 168 by a pure He/O₂ mixture (to remove any CO₂, NO, N₂O or N₂ in the soil pores or headspace) by applying a vacuum from the top and filling with He/O₂ mixture in three cycles that were completed 169 within 6 h. Subsequently, the headspace of each vessel was flushed continuously with a gas mixture 170 of He (80%) and O₂ (20%) at a flow rate of ca. 25 mL min⁻¹. The temperature of the incubation 171 room was set at 20°C during the 30 days of incubation. 172

173 The airflow from each vessel was directed sequentially to a gas chromatograph by two multi-174 positional valves (VICI, Houston, USA), where the gas sample was analyzed a thermal conductivity detector (TCD) for N₂, O₂, and CO₂, and an electron capture detector (ECD) for N₂O 175 quantification. The sample outlet of GC was connected to the inlet of the online NO analyzer (Eco-176 Physics, Dürnten, Switzerland). A microcontroller unit (Arduino Mega 2560 REV3) was 177 programmed to control the system via giving/receiving signals i) to/from the multi-positional VICI 178 179 valves for setting the target position, ii) to/from the GC for ready signal or start/stop method and iii) to the computer to start/stop data acquisition (for a schematic overview of the system see Fig. 180 181 1).

182 2.3. Mineral N analysis

Soil samples were collected at the end of the incubation period from each vessel. The soil samples 183 184 were extracted with 2 M KCl solution (1:5 w/v) by shaking for 1 hour. Additionally, ca. 15 ml of 185 soil solution was collected on two occasions from each vessel during the incubation period (during 186 moisture adjustment at the beginning of the incubation and 13 days after onset of treatments) by 187 opening the valve at the bottom of the membrane filter and applying slight overpressure from the top. The KCl extracts and soil solution were then filtered through Whatman 602 filter paper and 188 stored at -20° C until analysis. The concentrations of NH₄⁺ and NO₃⁻ in soil extracts and soil 189 solution were measured using a continuous flow analyzer (Smartchem 200S/N1104238, WESTCO, 190 191 France).

192

193 2.4. Isotope analysis and N₂O source partitioning

Additional gas samples for isotopic analysis were taken from each incubation vessel by attaching
120-mL serum bottles to the outlets in flow-through mode (Well et al., 2008) for around 2 h. The

196 $N_2O \ \delta^{15}N^{bulk}$, $\delta^{15}N^{\alpha}$, and $\delta^{18}O$ isotope signatures were then determined by analyzing *m/z* 44, 45, 197 and 46 of intact N_2O^+ molecular ions, and *m/z* 30 and 31 of NO^+ fragment ions (Toyoda and 198 Yoshida, 1999) on an isotope ratio mass spectrometer (Thermo Fisher Scientific, Bremen, 199 Germany) at Thünen Institute Braunschweig, Germany. The SP value of the produced N_2O (SP₀), 1.e. prior to its partial reduction to N_2 , was calculated using a Rayleigh-type model, assuming that 191 isotope dynamics followed closed-system behavior (Lewicka-Szczebak et al., 2017). The model 192 can be described as follows:

203
$$SP_{N2O-r} = SP_0 + \eta_r \ln\left(\frac{C}{C_0}\right)$$
 (1)

204

In this equation, SP_{N_2O-r} is the SP value of the remaining substrate (i.e. residual N₂O), SP₀ is the 205 SP value of the initial substrate (i.e. produced N₂O before reduction occurred), η_r is the net isotope 206 effect associated with N₂O reduction, and C and C₀ are the residual and the initial substrate 207 concentration (i.e. C/C₀ expresses the N₂O/(N₂O+N₂) product ratio). In this study an η_r of -5‰ was 208 209 used based on previously reported average values (Lewicka-Szczebak et al., 2014). For source partitioning, the end-member values (SPfD) were defined as 37% for nitrification and fungal 210 denitrification, and -5‰ (SP_D) for bacterial denitrification (Toyoda et al., 2017). The source 211 212 partitioning of N₂O production was based on the two end-member isotopic mass balance equation: 213

214
$$SP_0 = SP_D \times f_{D-SP} + SP_{fD} \times f_{fD-SP}$$
 (2)

215

It should be noted that distinguishing the N_2O produced between nitrification and fungal denitrification based on SP values is impossible because of the overlapping SP signature from those pathways (Frame and Casciotti, 2010; Lewicka-Szczebak et al., 2014; Toyoda et al., 2017). In this equation, f_{D-SP} and f_{fD-SP} represent the contribution of bacterial denitrification and

nitrification+fungal denitrification to total N₂O release calculated on the basis of SP₀ values, 220 221 respectively. In the present study, however, considering that the specific experimental conditions were set up to favor denitrification, i.e. i) N was applied in the form of NO_3^- ; ii) initial soil NH_4^+ 222 content was under detection limits (<0.5 mg NH₄⁺-N kg⁻¹ soil) with constantly low NH₄⁺ content 223 224 during incubation; and iii) high soil moisture (67% WFPS), the contribution of nitrification and nitrifier denitrification were assumed to be negligible (See Discussion). Thus, only the most 225 plausible scenario (bacterial denitrification vs fungal denitrification) was discussed for the SP₀ 226 source partitioning calculation. 227

- 228
- 229 2.5. Calculations and statistical analysis

The cumulative gas emissions were calculated by linear interpolation between measured fluxes.
Statistically significant differences were tested using Tukey's honest significant difference posthoc tests at a 5% significance level by SPSS 21.

- 233
- 234 **3. Results**
- 235 *3.1. Soil mineral N*

Soil NH₄⁺ concentrations in all treatments were very low (1-3 mg kg⁻¹ soil) at the end of the experiment (Table 1). Soil NO₃⁻ concentrations decreased over time in all treatments and the observed rate of decrease was more rapid with an increasing rate of straw application (Fig. 2A). Soil NO₃⁻ contents at the end of the 30-day incubation period followed the trend: KNO₃ > LS+N = CK > MS+N > HS+N (Table 1). Soil NO₃⁻ was completely depleted in the HS+N treatment after 13 days, whereas 84%, 59% and 12% of the soil NO₃⁻ were depleted in MS+N, LS+N and KNO₃ at the end of the incubation, respectively.

3.2. Emission of NO, N_2O , N_2 and CO_2 244

Significant NO emission peaks were observed in straw-amended treatments (HS+N, MS+N and 245 246 LS+N) immediately after onset of the experiment, whereas the NO emissions from the CK and KNO₃ treatments remained low throughout the experiment. Here the maximum NO emission rates 247 were 7 (\pm 2), 38 (\pm 18) and 22 (\pm 6) g NO-N ha⁻¹ day⁻¹ in the LS+N, MS+N and HS+N treatments, 248 respectively. Total emissions of NO over the 30 day incubation were significantly greater in the 249 HS+N and MS+N treatments than in the LS+N, with the lowest seen in KNO₃ and CK, indicating 250 the importance of labile C on NO formation and losses (Table 2). 251 The daily N₂O flux rate increased over time in all treatments, reaching a maximum at around day 252 7 and then decreased afterwards with different declining rates between the treatments (Fig. 2B-F). 253 254 Maximum daily N₂O emission rates were 269 (\pm 13), 414 (\pm 27), 631 (\pm 24), 734 (\pm 64), and 899 (±36) g N₂O-N ha⁻¹ day⁻¹ in the CK, KNO₃, LS+N, MS+N and HS+N treatments, respectively. In 255 the HS+N treatment, fluxes of N₂O decreased sharply after day 10, and remained low throughout 256

257 the experimental period, whereas the N_2O flux rates decreased gradually in all the other treatments, but were less pronounced for decreasing rates of added straw. At the end of the incubation period, 258 N₂O fluxes were below the detection limit in the HS+N and MS+N treatments, but significant N₂O 259 260 fluxes were still detected in all the other treatments.

The decrease in N₂O fluxes followed almost the same trend as the decrease in NO_3^- concentrations 261 in different treatments. From our measurements, when soil NO₃⁻ concentrations decreased below 262 40 mg NO_3 -N kg⁻¹ soil, the emission of N₂O also decreased. Thus, we can separate the experiment 263 into two Phases; Phase I (0-13 days - no limitation of NO₃⁻ in any treatments) and Phase II (13-30 264 265 $days - NO_3^{-1}$ limited, specifically in high straw rate treatments). As shown in Table 2, emission of N₂O in Phase I increased almost linearly with higher rates of straw incorporation in N fertilized 266 soils. However, application of KNO3 only slightly increased N2O fluxes during this period 267

compared to CK. In Phase II, almost no N₂O emissions were detected in the HS+N treatment, and the cumulative emissions during this phase were now negatively correlated with the rate of straw amendment. Here, the highest cumulative N₂O fluxes were measured in the LS+N and the KNO₃ treatments and the lowest from the HS+N treatment. Overall, application of N fertilizer alone significantly increased the cumulative N₂O emissions by 80% compared with the CK, while this increase was 125%, 85% and 49% in the LS+N, MS+N and HS+N treatments, respectively (Table 2).

Fluxes of N₂ in the CK and the KNO₃ treatments were consistently low throughout the experimental 275 period and increased only slightly during the last 10 days of incubation, being more pronounced in 276 the CK than in the KNO3 treatment. In straw amended treatments, N2 emissions were very low 277 during the first 10 days of incubation, but peaked over a relatively short period in the HS+N 278 treatment at 13 day (Fig. 2B-F). Subsequently, the N_2 emissions increased gradually over time in 279 all straw treatments and the rate of increase was larger at higher rates of straw application. Here, 280 the increase in N₂ emission rates was closely associated with the decrease in N₂O emissions and 281 soil NO3⁻ concentrations (Fig. 2). Emissions of N2 became dominant in the HS+N and the MS+N 282 treatments in Phase II. Total N₂ fluxes were more than 10-fold higher in Phase II than in Phase I in 283 all treatments. Between the treatments, the highest cumulative N_2 emissions were observed in 284 285 HS+N and MS+N, while the lowest were from the CK and KNO₃ (Table 2). The $N_2O/(N_2O+N_2)$ ratio decreased significantly in all treatments in Phase II compared to Phase I. However, this 286 decrease in $N_2O/(N_2O+N_2)$ ratio was lowest in both KNO₃ and LS+N treatments and highest in the 287 288 HS+N. In the MS+N treatment, the emission of N_2O (48%) was very similar to the emission of N_2 (52%) in Phase II, while in contrast it had been 99% N₂O and only 1% N₂ in Phase I. 289

290 Daily fluxes of CO₂ increased significantly over time in Phase I and remained relatively constant

in Phase II (Fig. 3). Cumulative CO₂ fluxes were almost doubled in the HS+N treatment compared

to CK, whereas an increase of about 70% was observed in MS+N compared to CK and KNO₃
treatments.

294 *3.3.* N₂O SP values and source partitioning

295 The SP₀ values ranged from -4‰ to 4‰ on day 1 in all treatments, being lowest in KNO₃ treatment 296 $(-4\% \pm 0.3)$ and highest in straw amended treatments $(4\% \pm 4.6 \text{ in HS+N})$ (Fig. 2). Addition of 297 straw in combination with KNO₃ increased SP₀ values from the first day (P <0.05) up to 8‰. The SP₀ values increased gradually over time in all treatments until day 13 and the rate of increase was 298 higher with higher levels of straw amendment. After day 13, different SP₀ value dynamics were 299 300 observed in different treatments, indicating multiple N₂O sources. The SP₀ values continued to 301 increase in the CK, KNO₃ and LS+N treatments until the end of the incubation, reaching maximum value of 30.5 ‰, whereas the SP₀ values sharply decreased in the MS+N treatment, reaching -2.6 302 303 ‰ at day 29. It was not possible to detect SP₀ values in the HS+N treatment after day 13 due to 304 extremely low N₂O concentrations (less than 100 ppb).

305 To calculate the proportion of each N_2O emitting process, source partitioning based on the two-306 end-member model was used. During the initial period of the experiment, very low SP₀ values 307 suggest that almost all emitted N₂O originated from bacterial denitrification, however, the share of 308 fungal denitrification derived N₂O increased almost linearly over time in all treatments. In later periods, specifically in Phase II, the SP₀ values showed a decreasing trend in the MS+N treatment 309 (no N₂O was emitted in HS+N), which paralleled the decreasing trend in N₂O emission and soil 310 NO₃⁻ content. This clearly indicates that when soil NO₃⁻ content decreases, bacterial denitrification 311 312 recovers and even then may dominate again in parallel to the increase in N₂O reduction rates. The contribution of fungal denitrification to the cumulative N₂O emitted during the incubation period 313 varied between 29% and 40% between the treatments, being significantly greater in the straw 314

amended soils (Fig. 4A). Note, we acknowledge that the SP₀ source partitioning approach provides only an estimation about the source of emitted N₂O due to the i) overlapping SP signals of different processes, ii) variability of isotopologue enrichment factors of N₂O reduction, and iii) variation in SP signals between different microbial strains (see Discussion). Nevertheless, the technique provides useful insights of the effects of straw addition on the underlying soil microbial processes.

320

321 **4. Discussion**

322 4.1. Sources of N_2O as affected by straw amendment and soil NO_3^- kinetics

Using SP values and the two end-member approach enables an estimation of the relative 323 324 contributions of fungal and bacterial denitrification to N₂O emission, which are occurring 325 simultaneously in amended soils. However, this approach is only valid if i) the N_2O reduction 326 fractionation effect on SP values can be corrected, and ii) the N₂O derived from nitrification and nitrifier denitrification were negligible. In the present study, the following conditions were set to 327 328 fit this specific case. Firstly, the direct measurement of N₂ production enabled us to calculate the initial SP values (SP₀) by considering the N_2O reduction fractionation effect (Lewicka-Szczebak 329 2017). the possibility of 330 et al.. which minimizes overestimation of fungal denitrification/nitrification (Wu et al., 2016). Secondly, a sandy soil with very low NH₄⁺ content 331 and high soil moisture (WFPS=67%) was chosen, and N was applied in the form of NO_3^- to 332 suppress N₂O formation from nitrification during the incubation period. Nevertheless, in the 333 present experiment fungal denitrification may still be overestimated due to the possible 334 contribution of nitrification derived N₂O related to the mineralization of the organic matter during 335 the experiment. However, in our recent study, the contribution of mineralization related N₂O 336 formation from various straw treatments was found to be < 5% of the emitted N₂O in a fertilized 337

sandy soil over 40 days of incubation (Koebke et al., 2018). Therefore, we believe that the present
experimental set up enabled a reliable estimation of fungal and bacterial denitrification derived
N₂O using the N₂O SP source partitioning approach.

During the initial period of the experiment, the very low SP_0 values (-4 to 4‰) suggested that 341 342 almost all emitted N₂O originated from bacterial denitrification. However, the linear increase in 343 SP₀ values until day 13 in all treatments indicated that the share of fungal denitrification derived N₂O increased over time. Dominancy of bacterial N₂O during the early phase of the experiment 344 345 with a subsequent shift (almost linear increase over time) towards fungal activity is in agreement with previous studies (Laughlin and Stevens, 2002; Zhong et al., 2018). This indicated that bacterial 346 347 activity started almost immediately after the start of the experiment, whereas the fungal colonization and activity increased somewhat slower, but became dominant in the latter phase. 348 Similarly, Henriksen and Breland (2002) found that bacterial activity dominated immediately after 349 350 residue incorporation in soils, whereas biological activity gradually shifted towards a dominance of fungal activity in later phases. The observed higher proportion of fungal N₂O production in straw 351 amended treatments is consistent with previous studies in which the fungal N₂O production was 352 increased under an enhanced organic C supply in moist soil (Laughlin et al., 2002; Zhong et al., 353 2018). 354

The sharp decrease in SP₀ values after day 15 in the MS+N treatment indicated a clear shift of N₂O source from fungal denitrification to bacterial denitrification, which was in parallel with the decreasing trend in N₂O emission and soil NO₃⁻ content. Unlike bacterial denitrifiers, fungi generally lack nitrous oxide reductase (*nos*), which means fungal denitrification mainly relies on the availability of NO₃⁻ and NO₂⁻ as electron acceptors (Baggs, 2011). We therefore presume the shift from fungal to bacterial N₂O in high straw amended treatments is attributed to the depletion of electron acceptors in soil (NO₃⁻, and NO₂), causing a decrease in denitrifying fungal community.

As most denitrifying bacteria have nos and thus can use N₂O as an electron acceptor, bacterial 362 363 denitrification recovered and dominated again when soil NO₃⁻ concentrations became limited. In the present study, the contribution of fungal denitrification to N₂O emission was similar to the 364 18% fungal contribution in control soil measured by Herold et al. (2012) (where the acetylene 365 366 inhibition technique was used), 40-51% in residue added soils reported by Zhong et al. (2018) (acetylene inhibition technique was used), and 36%-70% in NO₃⁻ treated coastal sediments reported 367 368 by Wankel et al. (2017) (isotopomer and stable isotope labelling was used). On the other hand, Laughlin and Stevens (2002) reported a much greater contribution of fungi to N₂O production (89%) 369 in grassland soils where soil organic C content was expected to be high. In this context, we conclude 370 371 that the application of crop residues could enhance N_2O emission through fungal denitrification, however, only when soil NO_3^- content is sufficiently high for supplying enough electron acceptors 372 373 to denitrifying organisms. However, in straw amended soils, a depletion of NO_3^{-1} in soil may cause 374 a shift from fungal to bacterial denitrification derived N_2O . Nevertheless, we should note that in view of the uncertainties of the SP approach, and that there are limited comparisons of studies using 375 the same approach to estimate fungal N₂O production there is still a need to confirm these results 376 in future studies. 377

378

4.2. N_2O production and reduction as affected by straw amendment and soil NO_3^- kinetics

Straw application can increase the rate of the denitrification (microbial or fungal) (Baggs, 2011; Qin et al., 2017a; Xiao et al., 2018), mainly due to the extra substrate supply (electron donors as energy source) (Giles et al., 2017). During the initial period of our experiment (in Phase I), total gaseous N (NO+N₂O+N₂) and CO₂ fluxes increased almost linearly with the higher straw application rate, thereby showing a significant relationship between respiration and denitrification rates (Burford and Bremner, 1975; Miller et al., 2008; Xiao et al., 2018).

Contradictory observations have been reported on the impact of crop straw incorporation on N₂O 386 emissions (Chen et al., 2014; Shan and Yan, 2013). This discrepancy may be partly because of the 387 effect of labile C on the end product of bacterial or fungal denitrification (N₂O or N₂), which may 388 vary under different conditions (Oin et al., 2017b). In our study, gaseous N fluxes during Phase I 389 390 were dominated by N₂O, with minor NO fluxes and almost no N₂ emissions even in the straw treatments. In Phase I, application of KNO₃ alone slightly increased N₂O fluxes compared to CK, 391 392 whereas N₂O fluxes increased more than 3-fold in HS+N indicating that labile organic C was likely limiting and controlling the rate of the N₂O production (Fig. 2). It has been suggested that addition 393 of crop residues would decrease N₂O emissions by lowering N₂O/N₂ ratio and stimulating 394 395 microbial immobilization in soil (Mathieu et al., 2006; Frimpong and Baggs, 2010). It is striking that in contrast to the expected outcome, even with excess organic C input (5 g straw kg⁻¹ dry soil 396 in HS+N), high NO₃⁻ content in soil would still inhibit N₂O reduction, causing very high N₂O 397 emission and also relatively high NO fluxes. Compared to N₂O fluxes, the NO fluxes in straw 398 amended soils were very low. However, compared to CK and KNO₃, straw amendment did induce 399 significant NO losses during the initial phase of the experiment. Because straw amendment also 400 401 enhanced fungal denitrification during this phase, the increase in NO fluxes may be attributed to the leakage from fungal denitrification. We may speculate that NO_3^- and NO_2^- reducing fungal 402 403 strains developed faster than the NO reducers shortly after amendments causing such leakage, 404 however, further research at the molecular level is needed to prove this hypothesis.

In the present study, the increase in N₂ fluxes became greater when soil NO₃⁻ contents decreased below 40 mg NO₃⁻-N kg⁻¹ soil (in Phase II), and N₂ fluxes dominated when concentrations decreased below 30 mg NO₃⁻-N kg⁻¹ soil in the HS+N and MS+N treatments (Fig. 4B). This is likely because the supply of NO₃⁻ at the denitrifying microsites became lower than the demand for terminal electron acceptors, which is in agreement with earlier reports (Weier et al., 1993; Senbayram et al., 2012; Qin et al., 2017a). It should be noted that measured total soil $NO_3^$ concentration was likely much higher than the concentrations in the soil microsites where denitrification occurs (Myrold and Tiedje, 1985). In this context, further research is needed perhaps with new measurement approaches to better quantify the direct relationship between $NO_3^$ concentration and the product stoichiometry of denitrification in soil hotspots.

In contrast to a number of studies (Cookson et al., 1998; Mathieu et al., 2006), our results showed 415 416 that N₂O reduction was found not to be directly affected by C supply. Higher labile C seems to favor N_2O reduction only when soil NO_3^- content decreases to a threshold concentration, which 417 seemed to occur when the bulk NO₃⁻ concentration ranged between 20 and 50 mg N kg⁻¹ soil in our 418 419 study. This is possibly because, NO_3^- is usually preferred over N_2O as a terminal electron acceptor and N₂O can escape from the soil whenever NO_3^- supply is greater than the reducing demand of 420 denitrifiers (Swerts et al., 1996). We believe that the present study explains the contradictory 421 422 reports of straw addition on N₂O fluxes as i) firstly we show in Phase I, straw addition triggered N₂O fluxes (when NO₃⁻ is high) with no N₂O reduction effect, and ii) secondly in Phase II, almost 423 all N₂O was reduced to N₂ when soil NO₃⁻ content decreased below a certain level. In support of 424 our findings, Xiao et al. (2018) recently showed that crop residue application drastically stimulated 425 N₂O fluxes when applied with KNO₃, compared to other nitrogen forms. 426

427

428 **5.** Conclusion

429 Based on the results in this experiment, there are four key take-home messages;

- 430 i) Straw amendment in moist sandy soil enhances soil denitrification rate and triggers431 gaseous N losses.
- 432 ii) When soil NO_3^- content is high, denitrification produces almost solely N_2O with little 433 NO and N_2 emissions from straw amended soils. Thus, our data suggests that straw

434 application, even at very high rates, does not directly affect the product stoichiometry 435 of denitrification $(N_2O/(N_2O+N_2))$ product ratio).

436 iii) The effect of crop residue application on soil N_2O emissions is related to the soil NO_3^- 437 content, since NO_3^- appears to be the ultimate regulator of the $N_2O/(N_2O+N_2)$ product 438 ratio of denitrification.

439 iv) Application of straw residue predominantly enhances fungal denitrification when soil 440 NO_3^- content is sufficient, however, when soil NO_3^- is low, bacterial denitrification 441 dominates.

442

Thus, the present study suggests that in agricultural systems where large amount of organic 443 plant residues are incorporated into soil, risk of N_2O emissions can be minimized by keeping 444 soil NO₃⁻ concentrations under site-specific threshold values (e.g. using NO₃⁻-free N fertilizers 445 446 and/or fertilizers containing nitrification inhibitors). Another way of mitigating N₂O in these soils could be to develop management practices which slow down fungal growth after residue 447 amendment as the present study suggests that fungal denitrification seems to be an important 448 processes contributing to N₂O losses in residue-amended soils. Further field validations are 449 needed to test the efficiency of these hypotheses. Overall, our study shows the importance of 450 continuous direct measurement of N₂ fluxes alongside N₂O and NO fluxes and soil NO₃⁻ 451 concentrations, and the use of the N2O ¹⁵N site preference approach in improving our 452 understanding of the complex interrelation between crop straw incorporation and gaseous 453 454 denitrification N losses.

455

456

457 Acknowledgements

This study was co-funded by the Deutsche Forschungsgemeinschaft through the project 458 "Fluxes and mechanisms of permanent nitrogen removal and N₂O production in a heavy 459 nitrogen loaded regions of China" and research unit DFG-FOR 2337: "Denitrification in 460 Agricultural Soils: Integrated Control and Modeling at Various Scales (DASIM)". This work 461 462 was also supported by the UK-China Virtual Joint Centre for Agricultural Nitrogen (CINAg, BB/N013468/1), which is jointly supported by the Newton Fund, via UK BBSRC and NERC, 463 and the Chinese Ministry of Science and Technology. We thank Martina Heuer and Jennifer 464 465 Ehe for stable isotope analysis, Ute Tambor for Nmin, Dr. Dominika Lewicka-Szczebak for isotopomers data analysis and Dr. Jan Reent Köster for NO analysis. 466

468 **References**

Baggs, E.M., 2011. Soil microbial sources of nitrous oxide: recent advances in knowledge,
emerging challenges and future direction. Current Opinion in Environmental Sustainability
3, 321–327.

- Bateman, E.J., Baggs, E.M., 2005. Contributions of nitrification and denitrification to N₂O
 emissions from soils at different water-filled pore space. Biology and Fertility of Soils 41,
 379–388.
- Bol, R., Toyoda, S., Yamulki, S., Hawkins, J.M.B., Cardenas, L.M., Yoshida, N., 2003. Dual
 isotope and isotopomer ratios of N₂O emitted from a temperate grassland soil after fertiliser
 application. Rapid Communications in Mass Spectrometry 17, 2550–2556.
- Burford, J.R., Bremner, J.M., 1975. Relationships between the denitrification capacities of soils
 and total, water-soluble and readily decomposable soil organic matter. Soil Biology and
 Biochemistry 7, 389–394.
- 481 Butterbach-Bahl K., Baggs, E.M., Dannenmann M., Kiese R., Zechmeister-Boltenstern S., 2013.
- 482 Nitrous oxide emissions from soils: how well do we understand the processes and their
 483 controls? Philosophical Transactions of the Royal Society B 368, 20130122.
- Cai, Z., Laughlin, R.J., Stevens, R.J., 2001. Nitrous oxide and dinitrogen emissions from soil under
 different water regimes and straw amendment. Chemosphere 42, 113–121.
- Cardenas, L.M., Hawkins, J.M.B., Chadwick, D., Scholefield, D., 2003. Biogenic gas emissions
 from soils measured using a new automated laboratory incubation system. Soil Biology and
 Biochemistry 35, 867–870.
- Chen, H., Mothapo, N.V., Shi, W., 2014. The significant contribution of fungi to soil N₂O
 production across diverse ecosystems. Applied Soil Ecology 73, 70–77.

- Cookson, W.R., Beare, M.H., Wilson, P.E., 1998. Effects of prior crop residue management on
 microbial properties and crop residue decomposition. Applied Soil Ecology 7, 179–188.
- 493 Davidson Eric A., Seitzinger Sybil, 2006. The enigma of progress in denitrification research.
 494 Ecological Applications 16, 2057–2063.
- 495 Decock, C., Six, J., 2013. How reliable is the intramolecular distribution of ¹⁵N in N₂O to source
 496 partition N₂O emitted from soil? Soil Biology and Biochemistry 65, 114–127.
- 497 Firestone, M.K., 1982. Biological Denitrification. Nitrogen in Agricultural Soils, agronomy
 498 monograph. Crop Science Society of America, pp. 289–326.
- Frame, C.H., Casciotti, K.L., 2010. Biogeochemical controls and isotopic signatures of nitrous
 oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7, 2695–
 2709.
- Frimpong, K.A., Baggs, E.M., 2010. Do combined applications of crop residues and inorganic
 fertilizer lower emission of N₂O from soil? Soil Use and Management 26, 412–424.
- Giles, M.E., Daniell, T.J., Baggs, E.M., 2010. Compound driven differences in N₂ and N₂O
 emission from soil; the role of substrate use efficiency and the microbial community. Soil
 Biology and Biochemistry 106, 90-98.
- Groffman, P.M., Altabet, M.A., Böhlke, J.K., Butterbach-Bahl, K., David, M.B., Firestone, M.K.,
 Giblin, A.E., Kana, T.M., Nielsen, L.P., Voytek, M.A., 2006. Methods for measuring
 denitrification: diverse approaches to a difficult problem. Ecological Applications 16,
 2091–2122.
- Hayden, H.L., Mele, P.M., Bougoure, D.S., Allan, C.Y., Norng, S., Piceno, Y.M., Brodie, E.L.,
 DeSantis, T.Z., Andersen, G.L., Williams, A.L., Hovenden, M.J., 2012. Changes in the
 microbial community structure of bacteria, archaea and fungi in response to elevated CO₂

- and warming in an Australian native grassland soil. Environmental Microbiology 14, 3081–
 3096.
- Henriksen, T.M., Breland, T.A., 2002. Carbon mineralization, fungal and bacterial growth, and
 enzyme activities as affected by contact between crop residues and soil. Biology and
 Fertility of Soils, 35. 41-48.
- Herold, M.B., Baggs, E.M., Daniell, T.J., 2012. Fungal and bacterial denitrification are differently
 affected by long-term pH amendment and cultivation of arable soil. Soil Biology and
 Biochemistry 54, 25–35.
- Hutchinson, G.L., Davidson, E.A., 1993. Processes for Production and Consumption of Gaseous
 Nitrogen Oxides in Soil. Agricultural Ecosystem Effects on Trace Gases and Global
 Climate Change ASA Special Publication 55, pp. 79–93, American Society of Agronomy,
 Crop Science Society of America, and Soil Science Society of America, Madison, WI.
- 526 IPCC, 2013. Annex II: Climate System Scenario Tables, in: Climate Change 2013: The Physical
- 527 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- 528 Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
- Koebke, S., Senbayram, M., Pfeiffer, B., Nacke, H., Dittert, K., 2018. Post-harvest N₂O and CO₂
 emissions related to plant residue incorporation of oilseed rape and barley straw depend on
 soil NO₃⁻ content. Soil &Tillage Research. 179, 105–113.
- Köster, J.R., Cárdenas, L.M., Bol, R., Lewicka-Szczebak, D., Senbayram, M., Well, R.,
 Giesemann, A., Dittert, K., 2015. Anaerobic digestates lower N₂O emissions compared to
 cattle slurry by affecting rate and product stoichiometry of denitrification An N₂O
 isotopomer case study. Soil Biology and Biochemistry 84, 65–74.
- 536 Köster, J.R., Well, R., Dittert, K., Giesemann, A., Lewicka-Szczebak, D., Mühling, K.-H.,
- 537 Herrmann, A., Lammel, J., Senbayram, M., 2013. Soil denitrification potential and its

538	influence on N ₂ O reduction and N ₂ O isotopomer ratios. Rapid Communications in Mass
539	Spectrometry 27, 2363–2373.

- Laughlin, R.J., Stevens, R.J., 2002. Evidence for fungal dominance of denitrification and
 codenitrification in a grassland Soil. Soil Science Society of America Journal 66, 1540–
 1548.
- Lewicka-Szczebak, D., Well, R., Koester, J.R., Fuss, R., Senbayram, M., Dittert, K., Flessa, H.,
 2014. Experimental determinations of isotopic fractionation factors associated with N₂O
 production and reduction during denitrification in soils. Geochimica et Cosmochimica Acta
 134, 55–73.
- Liu, B., Morkved, P.T., Frostegard, A., Bakken, L.R., 2010. Denitrification gene pools,
 transcription and kinetics of NO, N₂O and N₂ production as affected by soil pH. FEMS
 Microbiology Ecology 72, 407–417.
- Mathieu, O., Henault, C., Leveque, J., Baujard, E., Milloux, M.-J., Andreux, F., 2006. Quantifying
 the contribution of nitrification and denitrification to the nitrous oxide flux using ¹⁵N
 tracers. Environmental Pollution 144, 933–940.
- Meijide, A., Cardenas, L.M., Bol, R., Bergstermann, A., Goulding, K., Well, R., Vallejo, A.,
 Scholefield, D., 2010. Dual isotope and isotopomer measurements for the understanding of
 N₂O production and consumption during denitrification in an arable soil. European Journal
 of Soil Science 61, 364–374.
- Miller, M.N., Zebarth, B.J., Dandie, C.E., Burton, D.L., Goyer, C., Trevors, J.T., 2008. Crop
 residue influence on denitrification, N₂O emissions and denitrifier community abundance
 in soil. Soil Biology and Biochemistry 40, 2553–2562.

560	Molstad, L., Dörsch, P., Bakken, L.R., 2007. Robotized incubation system for monitoring gases
561	(O ₂ , NO, N ₂ O N ₂) in denitrifying cultures. Journal of Microbiological Methods 71, 202-
562	211.

- Myrold, D.D., Tiedje, J.M., 1985. Establishment of denitrification capacity in soil: Effects of
 carbon, nitrate and moisture. Soil Biology and Biochemistry 17, 819–822.
- Nadeem, S., Dorsch, P., Bakken, L.R., 2013. Autoxidation and acetylene-accelerated oxidation of
 NO in a 2-phase system: Implications for the expression of denitrification in ex situ
 experiments. Soil Biology and Biochemistry 57, 606–614.
- Pan, F., Chapman, S.J., Li, Y., Yao, H., 2017. Straw amendment to paddy soil stimulates
 denitrification but biochar amendment promotes anaerobic ammonia oxidation. Journal of
 Soils and Sediments 17, 2428–2437.
- Qin, S., Ding, K., Clough, T.J., Hu, C., Luo, J., 2017a. Temporal in situ dynamics of N₂O reductase
 activity as affected by nitrogen fertilization and implications for the N₂O/(N₂O + N₂)
 product ratio and N₂O mitigation. Biology and Fertility of Soils 53, 723–727.
- Qin, S., Hu, C., Clough, T.J., Luo, J., Oenema, O., Zhou, S., 2017b. Irrigation of DOC-rich liquid
 promotes potential denitrification rate and decreases N₂O/(N₂O+N₂) product ratio in a 0-2
 m soil profile. Soil Biology and Biochemistry 106, 1–8.
- 577 Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous Oxide (N₂O): The dominant
 578 ozone-depleting substance emitted in the 21st Century. Science 326, 123–125.
- 579 Rohe, L., Well, R., Lewicka-Szczebak, D., 2017. Use of oxygen isotopes to differentiate between
- 580 nitrous oxide produced by fungi or bacteria during denitrification. Rapid Communications
- 581 in Mass Spectrometry 31, 1297–1312.

582	Senbayram, M., Chen, R., Budai, A., Bakken, L., Dittert, K., 2012. N ₂ O emission and the				
583	$N_2O/(N_2O + N_2)$ product ratio of denitrification as controlled by available carbon substrates				
584	and nitrate concentrations. Agriculture, Ecosystems & Environment 147, 4-12.				
585	Shan, J., Yan, X., 2013. Effects of crop residue returning on nitrous oxide emissions in agricultural				
586	soils. Atmospheric Environment 71, 170–175.				
587	Smith, K.A., Arah, J.R.M., 1990. Losses of nitrogen by denitrification and emissions of nitrogen				
588	oxides from soils. In: The Fertiliser Society Proceedings 299, London				
589	Swerts, M., Merckx, R., Vlassak, K., 1996. Influence of carbon availability on the production of				
590	NO, N ₂ O, N ₂ and CO ₂ by soil cores during anaerobic incubation. Plant and Soil 181, 145-				
591	151.				
592	Terry, R.E., Duxbury, J.M., 1985. Acetylene decomposition in soils. Soil Science Society of				
593	America Journal 49, 90–94.				
594	Toyoda, S., Yoshida, N., 1999. Determination of nitrogen isotopomers of nitrous oxide on a				
595	modified isotope ratio mass spectrometer. Analytical Chemistry 71, 4711–4718.				
596	Toyoda, S., Yoshida, N., Koba, K., 2017. Isotopocule analysis of biologically produced nitrous				
597	oxide in various environments. Mass Spectrometry Reviews 36, 135–160.				
598	Wankel, S.D., Ziebis, W., Buchwald, C., Charoenpong, C., de Beer, D., Dentinger, J., Xu, Z.,				
599	Zengler, K., 2017. Evidence for fungal and chemodenitrification based N_2O flux from				
600	nitrogen impacted coastal sediments. Nature Communication 8, 15595.				
601	Weier, K., Doran, J., Power, J., Walters, D., 1993. Denitrification and the Dinitrogen Nitrous-Oxide				
602	Ratio as Affected by Soil-Water, Available Carbon, and Nitrate. Soil Science Society of				
603	America Journal 57, 66–72.				
604	Well, R., Flessa, H., Xing, L., Xiaotang, J., Römheld, V., 2008. Isotopologue ratios of N ₂ O emitted				
605	from microcosms with NH_4^+ fertilized arable soils under conditions favoring nitrification.				
	27				

606	Soil Biology and Biochemistry, Special Section: Enzymes in the Environment 40, 2416-
607	2426.

- Wu, D., Cardenas, L.M., Calvet, S., Brueggemann, N., Loick, N., Liu, S., Bol, R., 2017. The effect
 of nitrification inhibitor on N₂O, NO and N₂ emissions under different soil moisture levels
 in a permanent grassland soil. Soil Biology and Biochemistry 113, 153–160.
- Wu, D., Köster, J.R., Cárdenas, L.M., Brüggemann, N., Lewicka-Szczebak, D., Bol, R., 2016. N₂O
 source partitioning in soils using ¹⁵N site preference values corrected for the N₂O reduction

613 effect. Rapid Communications in Mass Spectrometry 30, 620–626.

- Kiao, Y., Zhang, F., Li, Y., Li, T., Che, Y., Deng, S., 2018. Influence of winter crop residue and
 nitrogen form on greenhouse gas emissions from acidic paddy soil. European Journal of
 Soil Biology 85, 23–29.
- Zhong, L., Bowatte, S., Newton, P.C.D., Hoogendoorn, C.J., Luo, D., 2018. An increased ratio of
 fungi to bacteria indicates greater potential for N₂O production in a grazed grassland
 exposed to elevated CO₂. Agriculture, Ecosystems & Environment 254, 111–116.
- 620
- 621

Table 1 Soil nitrate (NO₃⁻) and ammonium (NH₄⁺) concentrations at the end of the experiment in non-amended control (CK), KNO₃ (KNO₃), low rate of straw + KNO₃ (LS+N), medium rate of straw + KNO₃ (MS+N) and high rate of straw + KNO₃ (HS+N) treatments. Means denoted by a different letter in the same column differ significantly according to the Tukey's HSD post-hoc tests at α =0.05.

627

		NO ₃ -	$\mathbf{NH_{4}^{+}}$
628	Parameter	(mg N kg ⁻¹ dry soil)	(mg N kg ⁻¹ dry soil)
629	СК	33±8.3 ^b	2±1.1 ª
	KNO ₃	81±5.6 ª	1±0.3 ^a
630	LS+N	37±4.8 ^b	3±0.8 ª
631	MS+N	15±8.6 °	2±1.2 ª
	HS+N	0±0.0 d	3±0.1 a
632			

633

Table 2 Cumulative emissions of N₂O, N₂, NO and CO₂ at Phase I (0-13 days) and during the

whole incubation period (0-30 days) in non-amended control (CK), KNO₃ (KNO₃), low rate of

straw + KNO₃ (LS+N), medium rate of straw + KNO₃ (MS+N) and high rate of straw + KNO₃

(HS+N) treatments. Means (n=3) denoted by a different letter in the same column differ

639 significantly according to the Tukey's HSD post-hoc tests at α =0.05.

	N ₂ O	N ₂ O	N_2	N_2	NO	NO	CO ₂	CO ₂
	(g N ha ⁻¹)	(g N ha ⁻¹)	(g N ha ⁻¹)	(g N ha-1)	(g N ha ⁻¹)	(g N ha ⁻¹)	(kg C ha ⁻¹)	(Kg C ha ⁻¹)
	Day 0-13	Total	Day 0-13	Total	Day 0-13	Total	Day 0-13	Total
СК	2448±145 ^d	4555±606 ^b	38±1.0 ^b	697±93.0 ^b	1.4±0.1°	1.7±0.1°	77±19.3ª	156±35.4 ^b
KNO ₃	4033±106 °	8115±792 ^a	45±7.8 ^b	564±78.7 ^b	1.6±0.0°	1.9±0.1°	71±14.9 ^a	160±23.8 ^b
LS+N	5616±151 ^b	10192±771 ^a	103±18.4 ab	819±62.8 ab	25.0±5.7 ^{bc}	25.3±5.7 ^{bc}	74±18.6 ^a	176±41.8 ^b
MS+N	6907±567 ^a	8797±1378 ^a	81±3.0 ^b	1656±139.7 ab	$71.2{\pm}11.6^{a}$	71.6±11.6 ^a	120±19.3ª	252±17.8 ^{ab}
HS+N	7594±302 ^a	7604±295 ^a	197±45.3 ^a	2049±597.0 ^a	42.3±11.9 ^{ab}	42.7±12.0 ^{ab}	131±14.6 ^a	307±30.7 ^a

645 Figure captions:

646 Figure 1. Simplified diagram of the robotized continuous flow incubation system (ROFLOW) used

- 647 in the experiment. The system is controlled by a Arduino-based microcontroller unit (Arduino
- 648 Mega attached with 16 position relay). This control unit adjusts the position of VICI valves, gives
- signals to the GC (start/stop method) and the computer (start and stop data acquisition).
- 650

651	Figure 2. (A) NO_3^-	dynamics, and (B-F) daily er	missions of N ₂ O,	N ₂ , NO and SP ₀ values	during
-----	------------------------	-----------------	---------------	-------------------------------	--	--------

- the incubation period (30 days) in non-amended control (CK), KNO₃ (KNO₃), low rate of straw +
 KNO₃ (LS+N), medium rate of straw + KNO₃ (MS+N) and high rate of straw + KNO₃ (HS+N)
- treatments. Error bars shows the standard error of each treatments (n=3).

655

Figure 3. Soil daily cumulative CO₂ emissions during the incubation (30 days) in non-amended

657 control (CK), KNO₃ (KNO₃), low rate of straw + KNO₃ (LS+N), medium rate of straw + KNO₃

(MS+N) and high rate of straw + KNO₃ (HS+N) treatments. Error bars shows the standard error of each treatment (n=3). Means denoted by a different letter differ significantly according to the

660 Tukey's HSD post-hoc tests at α =0.05.

661

Figure 4. (A) Contribution of fungal and bacterial denitrification derived N₂O emissions to the cumulative N₂O fluxes, and (B) the ratio of N₂O/(N₂O+N₂) during the Phase I (0-13 days), Phase II (13-30 days), and whole incubation period (0-30 days) in non-amended control (CK), KNO₃ (KNO₃), low rate of straw + KNO₃ (LS+N), medium rate of straw + KNO₃ (MS+N) and high rate of straw + KNO₃ (HS+N) treatments. Error bars shows the standard error of each treatment (n=3). DAO indicates days after onset of the treatments.

668

669