1,261 research outputs found
Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED
Assuming high temperature and taking subleading temperature dependence into
account, gauge dependence of one-loop electron dispersion relation is
investigated in massless QED at zero chemical potential. The analysis is
carried out using a general linear covariant gauge. The equation governing the
gauge dependence of the dispersion relation is obtained and used to prove that
the dispersion relation is gauge independent in the limiting case of momenta
much larger than . It is also shown that the effective mass is not
influenced by the leading temperature dependence of the gauge dependent part of
the effective self-energy. As a result the effective mass, which is of order
, does not receive a correction of order from one loop, independent
of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte
Light-front Schwinger Model at Finite Temperature
We study the light-front Schwinger model at finite temperature following the
recent proposal in \cite{alves}. We show that the calculations are carried out
efficiently by working with the full propagator for the fermion, which also
avoids subtleties that arise with light-front regularizations. We demonstrate
this with the calculation of the zero temperature anomaly. We show that
temperature dependent corrections to the anomaly vanish, consistent with the
results from the calculations in the conventional quantization. The gauge
self-energy is seen to have the expected non-analytic behavior at finite
temperature, but does not quite coincide with the conventional results.
However, the two structures are exactly the same on-shell. We show that
temperature does not modify the bound state equations and that the fermion
condensate has the same behavior at finite temperature as that obtained in the
conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.
Suppression of Bremsstrahlung at Non-Zero Temperature
The first-order bremsstrahlung emission spectrum is
at zero temperature. If the radiation is emitted into a region that contains a
thermal distribution of photons, then the rate is increased by a factor
where is the Bose-Einstein function. The stimulated
emission changes the spectrum to for . If this were correct, an infinite amount of energy would be radiated in the
low frequency modes. This unphysical result indicates a breakdown of
perturbation theory. The paper computes the bremsstrahlung rate to all orders
of perturbation theory, neglecting the recoil of the charged particle. When the
perturbation series is summed, it has a different low-energy behavior. For
, the spectrum is independent of and has a value
proportional to .Comment: 16 pages (plain TeX), figures available on reques
Collective fermionic excitations in systems with a large chemical potential
We study fermionic excitations in a cold ultrarelativistic plasma. We
construct explicitly the quantum states associated with the two branches which
develop in the excitation spectrum as the chemical potential is raised. The
collective nature of the long wavelength excitations is clearly exhibited.
Email contact: [email protected]: Saclay-T93/018 Email: [email protected]
Thermal Dileptons from a Nonperturbative Quark-Gluon Phase
Assuming that gluon condensates are important even above the deconfining
phase transition, we develop a model for the dilepton yield from a quark gluon
plasma. Using a simple fire ball description of a heavy ion collision, and
various estimates of the strengths of the gluon condensates, we compare our
predicted dilepton yields with those observed in the CERES and HELIOS
experiments at CERN. The simple model gives an adequate description of the
data, and in particular it explains the observed considerable enhancement of
the yield in the low mass region.Comment: 7 pages, 6 figures, reference adde
Color, Spin and Flavor Diffusion in Quark-Gluon Plasmas
In weakly interacting quark-gluon plasmas diffusion of color is found to be
much slower than the diffusion of spin and flavor because color is easily
exchanged by the gluons in the very singular forward scattering processes. If
the infrared divergence is cut off by a magnetic mass, ,
the color diffusion is , a
factor smaller than spin and flavor diffusion. A similar effect is
expected in electroweak plasmas above due to exchanges. The color
conductivity in quark-gluon plasmas and the electrical conductivity in
electroweak plasmas are correspondingly small in relativistic heavy ion
collisions and the very early universe.Comment: 5 pages, no figure
Fermion and Anti-Fermion Effective Masses in High Temperature Gauge Theories in -Asymmetric Background
We calculate the splitting between fermion and anti-fermion effective masses
in high temperature gauge theories in the presence of a non-vanishing chemical
potential due to the -asymmetric fermionic background. In particular we
consider the case of left-handed leptons in the theory when
the temperature is above GeV and the gauge symmetry is restored.Comment: 13 pages, TIPAC-93001
Exact Effective Action for (1+1 Dimensional) Fermions in an Abelian Background at Finite Temperature
In an effort to further understand the structure of effective actions for
fermions in an external gauge background at finite temperature, we study the
example of 1+1 dimensional fermions interacting with an arbitrary Abelian gauge
field. We evaluate the effective action exactly at finite temperature. This
effective action is non-analytic as is expected at finite temperature. However,
contrary to the structure at zero temperature and contrary to naive
expectations, the effective action at finite temperature has interactions to
all (even) orders (which, however, do not lead to any quantum corrections). The
covariant structure thus obtained may prove useful in studying 2+1 dimensional
models in arbitrary backgrounds. We also comment briefly on the solubility of
various 1+1 dimensional models at finite temperature.Comment: A few clarifying remarks added;21 page
Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration
The thermal and nonthermal pion production by sigma decay and its relation
with chiral symmetry restoration in a hot and dense matter are investigated.
The nonthermal decay into pions of sigma mesons which are popularly produced in
chiral symmetric phase leads to a low-momentum pion enhancement as a possible
signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure
Radiative Neutrino Decay in Media
In this letter we introduce a new method to determine the radiative neutrino
decay rate in the presence of a medium. Our approach is based on the
generalisation of the optical theorem at finite temperature and density.
Differently from previous works on this subject, our method allows to account
for dispersive and dissipative electromagnetic properties of the medium. Some
inconsistencies that are present in the literature are pointed-out and
corrected here. We shortly discuss the relevance of our results for neutrino
evolution in the early universe.Comment: 11 pages, 3 encapsulated figure
- …
