1,261 research outputs found

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Light-front Schwinger Model at Finite Temperature

    Full text link
    We study the light-front Schwinger model at finite temperature following the recent proposal in \cite{alves}. We show that the calculations are carried out efficiently by working with the full propagator for the fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly vanish, consistent with the results from the calculations in the conventional quantization. The gauge self-energy is seen to have the expected non-analytic behavior at finite temperature, but does not quite coincide with the conventional results. However, the two structures are exactly the same on-shell. We show that temperature does not modify the bound state equations and that the fermion condensate has the same behavior at finite temperature as that obtained in the conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.

    Suppression of Bremsstrahlung at Non-Zero Temperature

    Get PDF
    The first-order bremsstrahlung emission spectrum is αdω/ω\alpha d\omega/\omega at zero temperature. If the radiation is emitted into a region that contains a thermal distribution of photons, then the rate is increased by a factor 1+N(ω)1+N(\omega) where N(ω)N(\omega) is the Bose-Einstein function. The stimulated emission changes the spectrum to αTdω/ω2\alpha Td\omega/\omega^{2} for ωT\omega\ll T. If this were correct, an infinite amount of energy would be radiated in the low frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper computes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged particle. When the perturbation series is summed, it has a different low-energy behavior. For ωαT\omega\ll\alpha T, the spectrum is independent of ω\omega and has a value proportional to dω/αTd\omega/\alpha T .Comment: 16 pages (plain TeX), figures available on reques

    Collective fermionic excitations in systems with a large chemical potential

    Get PDF
    We study fermionic excitations in a cold ultrarelativistic plasma. We construct explicitly the quantum states associated with the two branches which develop in the excitation spectrum as the chemical potential is raised. The collective nature of the long wavelength excitations is clearly exhibited. Email contact: [email protected]: Saclay-T93/018 Email: [email protected]

    Thermal Dileptons from a Nonperturbative Quark-Gluon Phase

    Full text link
    Assuming that gluon condensates are important even above the deconfining phase transition, we develop a model for the dilepton yield from a quark gluon plasma. Using a simple fire ball description of a heavy ion collision, and various estimates of the strengths of the gluon condensates, we compare our predicted dilepton yields with those observed in the CERES and HELIOS experiments at CERN. The simple model gives an adequate description of the data, and in particular it explains the observed considerable enhancement of the yield in the low mass region.Comment: 7 pages, 6 figures, reference adde

    Color, Spin and Flavor Diffusion in Quark-Gluon Plasmas

    Full text link
    In weakly interacting quark-gluon plasmas diffusion of color is found to be much slower than the diffusion of spin and flavor because color is easily exchanged by the gluons in the very singular forward scattering processes. If the infrared divergence is cut off by a magnetic mass, mmagαsTm_{mag}\sim \alpha_sT, the color diffusion is Dcolor(αsln(1/αs)T)1D_{color}\sim (\alpha_s\ln(1/\alpha_s)T)^{-1}, a factor αs\alpha_s smaller than spin and flavor diffusion. A similar effect is expected in electroweak plasmas above MWM_W due to W±W^\pm exchanges. The color conductivity in quark-gluon plasmas and the electrical conductivity in electroweak plasmas are correspondingly small in relativistic heavy ion collisions and the very early universe.Comment: 5 pages, no figure

    Fermion and Anti-Fermion Effective Masses in High Temperature Gauge Theories in CPCP-Asymmetric Background

    Full text link
    We calculate the splitting between fermion and anti-fermion effective masses in high temperature gauge theories in the presence of a non-vanishing chemical potential due to the CPCP-asymmetric fermionic background. In particular we consider the case of left-handed leptons in the SU(2)U(1)SU(2)\otimes U(1) theory when the temperature is above 250250 GeV and the gauge symmetry is restored.Comment: 13 pages, TIPAC-93001

    Exact Effective Action for (1+1 Dimensional) Fermions in an Abelian Background at Finite Temperature

    Get PDF
    In an effort to further understand the structure of effective actions for fermions in an external gauge background at finite temperature, we study the example of 1+1 dimensional fermions interacting with an arbitrary Abelian gauge field. We evaluate the effective action exactly at finite temperature. This effective action is non-analytic as is expected at finite temperature. However, contrary to the structure at zero temperature and contrary to naive expectations, the effective action at finite temperature has interactions to all (even) orders (which, however, do not lead to any quantum corrections). The covariant structure thus obtained may prove useful in studying 2+1 dimensional models in arbitrary backgrounds. We also comment briefly on the solubility of various 1+1 dimensional models at finite temperature.Comment: A few clarifying remarks added;21 page

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    Radiative Neutrino Decay in Media

    Get PDF
    In this letter we introduce a new method to determine the radiative neutrino decay rate in the presence of a medium. Our approach is based on the generalisation of the optical theorem at finite temperature and density. Differently from previous works on this subject, our method allows to account for dispersive and dissipative electromagnetic properties of the medium. Some inconsistencies that are present in the literature are pointed-out and corrected here. We shortly discuss the relevance of our results for neutrino evolution in the early universe.Comment: 11 pages, 3 encapsulated figure
    corecore