743 research outputs found

    Chiral Phase Transitions in QCD at Finite Temperature: Hard-Thermal-Loop Resummed Dyson-Schwinger Equation in the Real Time Formalism

    Get PDF
    Chiral phase transition in thermal QCD is studied by using the Dyson-Schwinger (DS) equation in the real time hard thermal loop approximation. Our results on the critical temperature and the critical coupling are significantly different from those in the preceding analyses in the ladder DS equation, showing the importance of properly taking into account the essential thermal effects, namely the Landau damping and the unstable nature of thermal quasiparticles.Comment: 4 pages including 2 figures (ps file), to appear in the proceedings of the 4th International Conference on Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP-2001), 26-30 November 2001, Jaipur, Indi

    On finite--temperature and --density radiative corrections to the neutrino effective potential in the early Universe

    Full text link
    Finite-temperature and -density radiative corrections to the neutrino effective potential in the otherwise CP-symmetric early Universe are considered in the real-time approach of Thermal Field Theory. A consistent perturbation theory endowed with the hard thermal loop resummation techniques developed by Braaten and Pisarski is applied. Special attention is focused on the question whether such corrections can generate any nonzero contribution to the CP-symmetric part of the neutrino potential, if the contact approximation for the W-propagator is used.Comment: 11 pages, revtex styl

    Light-front Schwinger Model at Finite Temperature

    Full text link
    We study the light-front Schwinger model at finite temperature following the recent proposal in \cite{alves}. We show that the calculations are carried out efficiently by working with the full propagator for the fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly vanish, consistent with the results from the calculations in the conventional quantization. The gauge self-energy is seen to have the expected non-analytic behavior at finite temperature, but does not quite coincide with the conventional results. However, the two structures are exactly the same on-shell. We show that temperature does not modify the bound state equations and that the fermion condensate has the same behavior at finite temperature as that obtained in the conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.

    Orbital transfer vehicle propulsion issues

    Get PDF
    The development of a reusable and space-based orbital transfer vehicle (OTV) necessitates an integral approach toward structural and propulsion subsystems design. A single engine installation necessitates moving the engine further aft and/or relocation of the engine gimbal point to accommodate vehicle control requirements. Penalties associated with gimbal point relocation without increasing stage length or modifying typical advanced engine concepts, as well as a method for minimizing such penalties, are presented for a single engine toroidal tank OTV configuration. Alternative integrated vehicle structure/engine concepts are also presented for multi-engine configurations. Features of these potential concepts are given which indicate the need for substantial additional study of feedline gimbal alternatives before firmly establishing advanced engine design. The issue of vehicle/engine integration is addressed in three areas: interfaces (physical and functional), installation requirements, and reliability apportionment (i.e., number of engines required to assure mission completion)

    Collective fermionic excitations in systems with a large chemical potential

    Get PDF
    We study fermionic excitations in a cold ultrarelativistic plasma. We construct explicitly the quantum states associated with the two branches which develop in the excitation spectrum as the chemical potential is raised. The collective nature of the long wavelength excitations is clearly exhibited. Email contact: [email protected]: Saclay-T93/018 Email: [email protected]

    Energy and pressure densities of a hot quark-gluon plasma

    Get PDF
    We calculate the energy and hydrostatic pressure densities of a hot quark-gluon plasma in thermal equilibrium through diagrammatic analyses of the statistical average, Θμν\langle \Theta_{\mu \nu} \rangle, of the energy-momentum-tensor operator Θμν\Theta_{\mu \nu}. To leading order at high temperature, the energy density of the long wave length modes is consistently extracted by applying the hard-thermal-loop resummation scheme to the operator-inserted no-leg thermal amplitudes Θμν\langle \Theta_{\mu \nu} \rangle. We find that, for the long wave length gluons, the energy density, being positive, is tremendously enhanced as compared to the noninteracting case, while, for the quarks, no noticeable deviation from the noninteracting case is found.Comment: 33 pages. Figures are not include

    THERMAL EFFECTS ON THE CATALYSIS BY A MAGNETIC FIELD

    Get PDF
    We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. We point out some new nonanalytic behavior that develops in this system at finite temperature.Comment: 10 pages, plain Te

    Contemporary practices of strength and conditioning coaches in professional soccer

    Get PDF
    This study describes the contemporary practices of strength and conditioning coaches in professional soccer. Fifty-two strength and conditioning coaches from professional leagues across 18 countries completed an online survey, consisting of 45 questions, with eight sections: (a) background information, (b) muscular strength and power development, (c) speed development, (d) plyometrics, (e) flexibility development, (f) physical testing, (g) technology use, and (h) programing. A frequency analysis was used to assess and report responses to fixed response questions, and thematic-analysis used for open-ended questions to create clear, identifiable and distinct themes. All strength and conditioning coaches were educated to degree level or higher, 65% held strength and conditioning certifications and 54% held soccer coaching certifications. Concentric (100%) and eccentric (98%) modes of resistance were the most commonly prescribed, whereas the squat (including variations) (52%) was deemed the most important exercise for soccer players. Hang clean (33%) and multiple hops/lunges (89%) were the most programed Olympic weightlifting and plyometric exercises. Global Positioning Systems (94%) were the most utilized technology-based equipment. Time, scheduling and fixtures were the biggest issues faced, which made it difficult to periodize training programs and apply appropriate training loads. Furthermore, strength and conditioning coaches would like to further integrate technology to comprehensively monitor and test players, while also believing that technology will continue to be developed and integrated in the future. Strength and conditioning coaches from professional soccer can use the information from this study to review current practices and also provide ideas for diversifying or modifying future practices

    Electroweak Baryogenesis and Standard Model CP Violation

    Full text link
    We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov in which the phase of the CKM mixing matrix is the only source of CPCP violation. This mechanism is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an expanding bubble produced at the electroweak phase transition. In agreement with the recent work of Gavela, Hern\'andez, Orloff and P\`ene, we conclude that QCD damping effects reduce the asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence. We compute the asymmetry analytically. Our analysis reflects the observation that only a thin, outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a new source of CPCP violation.Comment: 36 pages, in LaTeX, one LaTeX figure included, 5 others available upon request, SLAC-PUB-647

    The Plasmon in Hot ϕ4\phi^4 Theory

    Full text link
    We study the 2-loop resummed propagator in hot g2ϕ4g^2\phi^4 theory. The propagator has a cut along the whole real axis in the complex energy plane, but for small gg, the spectral density is sharply peaked around the plasmon. The dispersion relation and the width of the plasmon are calculated at zero {\em and} finite momentum. At large momenta the spectral width vanishes, and the plasmon looses its collectivity and behaves like a non-interacting free particle.Comment: REVTeX, 30 pages, 8 uuencoded ps-figure
    corecore