85 research outputs found
TRAINING LOAD PRIOR TO INJURY IN PROFESSIONAL RUGBY LEAGUE PLAYERS: ANALYSING INJURY RISK WITH MACHINE LEARNING
This study explores the application of Global Positioning System tracking data from field training sessions and supervised machine learning algorithms for predicting injury risk of players across a single National Rugby League season. Previous work across a range of sporting codes has demonstrated associations between training loads and increased incidence of injury in professional athletes. Most of the work conducted has applied a reductionist approach, identifying training load characteristics as risk factors using generalised models to show population trends. This study demonstrates promising results by applying processing techniques and machine learning algorithms to analyse the injury risk associated with complex training load patterns. The accuracy of the algorithms are investigated along with the importance of training load predictors and data window sizes
Recommended from our members
Rho Family GTPases and Rho GEFs in Glucose Homeostasis.
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells.
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells
From MDPI via Jisc Publications RouterHistory: accepted 2021-09-15, pub-electronic 2021-09-18Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/P013384/1P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation
P-rex1 cooperates with PDGFRβ to drive cellular migration in 3D microenvironments
Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes
Study protocol: developing a decision system for inclusive housing: applying a systematic, mixed-method quasi-experimental design
Background Identifying the housing preferences of people with complex disabilities is a much needed, but under-developed area of practice and scholarship. Despite the recognition that housing is a social determinant of health and quality of life, there is an absence of empirical methodologies that can practically and systematically involve consumers in this complex service delivery and housing design market. A rigorous process for making effective and consistent development decisions is needed to ensure resources are used effectively and the needs of consumers with complex disability are properly met. Methods/Design This 3-year project aims to identify how the public and private housing market in Australia can better respond to the needs of people with complex disabilities whilst simultaneously achieving key corporate objectives. First, using the Customer Relationship Management framework, qualitative (Nominal Group Technique) and quantitative (Discrete Choice Experiment) methods will be used to quantify the housing preferences of consumers and their carers. A systematic mixed-method, quasi-experimental design will then be used to quantify the development priorities of other key stakeholders (e.g., architects, developers, Government housing services etc.) in relation to inclusive housing for people with complex disabilities. Stakeholders randomly assigned to Group 1 (experimental group) will participate in a series of focus groups employing Analytical Hierarchical Process (AHP) methodology. Stakeholders randomly assigned to Group 2 (control group) will participate in focus groups employing existing decision making processes to inclusive housing development (e.g., Risk, Opportunity, Cost, Benefit considerations). Using comparative stakeholder analysis, this research design will enable the AHP methodology (a proposed tool to guide inclusive housing development decisions) to be tested. Discussion It is anticipated that the findings of this study will enable stakeholders to incorporate consumer housing preferences into commercial decisions. Housing designers and developers will benefit from the creation of a parsimonious set of consumer-led housing preferences by which to make informed investments in future housing and contribute to future housing policy. The research design has not been applied in the Australian research context or elsewhere, and will provide a much needed blueprint for market investment to develop viable, consumer directed inclusive housing options for people with complex disability
Control of Cerebellar Long-Term Potentiation by P-Rex-Family Guanine-Nucleotide Exchange Factors and Phosphoinositide 3-Kinase
Long-term potentiation (LTP) at the parallel fibre-Purkinje cell synapse in the cerebellum is a recently described and poorly characterized form of synaptic plasticity. The induction mechanism for LTP at this synapse is considered reciprocal to "classical" LTP at hippocampal CA1 pyramidal neurons: kinases promote increased trafficking of AMPA receptors into the postsynaptic density in the hippocampus, whereas phosphatases decrease internalization of AMPA receptors in the cerebellum. In the hippocampus, LTP occurs in overlapping phases, with the transition from early to late phases requiring the consolidation of initial induction processes by structural re-arrangements at the synapse. Many signalling pathways have been implicated in this process, including PI3 kinases and Rho GTPases.We hypothesized that analogous phases are present in cerebellar LTP, and took as the starting point for investigation our recent discovery that P-Rex--a Rac guanine nucleotide exchange factor which is activated by PtdIns(3,4,5)P(3)--is highly expressed in mouse cerebellar Purkinje neurons and plays a role in motor coordination. We found that LTP evoked at parallel fibre synapses by 1 Hz stimulation or by NO donors was not sustained beyond 30 min when P-Rex was eliminated or Rac inhibited, suggesting that cerebellar LTP exhibits a late phase analogous to hippocampal LTP. In contrast, inhibition of PI3 kinase activity eliminated LTP at the induction stage.Our data suggest that a PI3K/P-Rex/Rac pathway is required for late phase LTP in the mouse cerebellum, and that other PI3K targets, which remain to be discovered, control LTP induction
P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils
ABSTRACT G-protein-coupled receptors (GPCRs) regulate the organisation of the actin cytoskeleton by activating the Rac subfamily of small GTPases. The guanine-nucleotide-exchange factor (GEF) P-Rex1 is engaged downstream of GPCRs and phosphoinositide 3-kinase (PI3K) in many cell types, and promotes tumorigenic signalling and metastasis in breast cancer and melanoma, respectively. Although P-Rex1-dependent functions have been attributed to its GEF activity towards Rac1, we show that P-Rex1 also acts as a GEF for the Rac-related GTPase RhoG, both in vitro and in GPCR-stimulated primary mouse neutrophils. Furthermore, loss of either P-Rex1 or RhoG caused equivalent reductions in GPCR-driven Rac activation and Rac-dependent NADPH oxidase activity, suggesting they both function upstream of Rac in this system. Loss of RhoG also impaired GPCR-driven recruitment of the Rac GEF DOCK2, and F-actin, to the leading edge of migrating neutrophils. Taken together, our results reveal a new signalling hierarchy in which P-Rex1, acting as a GEF for RhoG, regulates Rac-dependent functions indirectly through RhoG-dependent recruitment of DOCK2. These findings thus have broad implications for our understanding of GPCR signalling to Rho GTPases and the actin cytoskeleton
Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial
Background:
Rucaparib, a poly(ADP-ribose) polymerase inhibitor, has anticancer activity in recurrent ovarian carcinoma harbouring a BRCA mutation or high percentage of genome-wide loss of heterozygosity. In this trial we assessed rucaparib versus placebo after response to second-line or later platinum-based chemotherapy in patients with high-grade, recurrent, platinum-sensitive ovarian carcinoma.
Methods:
In this randomised, double-blind, placebo-controlled, phase 3 trial, we recruited patients from 87 hospitals and cancer centres across 11 countries. Eligible patients were aged 18 years or older, had a platinum-sensitive, high-grade serous or endometrioid ovarian, primary peritoneal, or fallopian tube carcinoma, had received at least two previous platinum-based chemotherapy regimens, had achieved complete or partial response to their last platinum-based regimen, had a cancer antigen 125 concentration of less than the upper limit of normal, had a performance status of 0–1, and had adequate organ function. Patients were ineligible if they had symptomatic or untreated central nervous system metastases, had received anticancer therapy 14 days or fewer before starting the study, or had received previous treatment with a poly(ADP-ribose) polymerase inhibitor. We randomly allocated patients 2:1 to receive oral rucaparib 600 mg twice daily or placebo in 28 day cycles using a computer-generated sequence (block size of six, stratified by homologous recombination repair gene mutation status, progression-free interval after the penultimate platinum-based regimen, and best response to the most recent platinum-based regimen). Patients, investigators, site staff, assessors, and the funder were masked to assignments. The primary outcome was investigator-assessed progression-free survival evaluated with use of an ordered step-down procedure for three nested cohorts: patients with BRCA mutations (carcinoma associated with deleterious germline or somatic BRCA mutations), patients with homologous recombination deficiencies (BRCA mutant or BRCA wild-type and high loss of heterozygosity), and the intention-to-treat population, assessed at screening and every 12 weeks thereafter. This trial is registered with ClinicalTrials.gov, number NCT01968213; enrolment is complete.
Findings:
Between April 7, 2014, and July 19, 2016, we randomly allocated 564 patients: 375 (66%) to rucaparib and 189 (34%) to placebo. Median progression-free survival in patients with a BRCA-mutant carcinoma was 16·6 months (95% CI 13·4–22·9; 130 [35%] patients) in the rucaparib group versus 5·4 months (3·4–6·7; 66 [35%] patients) in the placebo group (hazard ratio 0·23 [95% CI 0·16–0·34]; p<0·0001). In patients with a homologous recombination deficient carcinoma (236 [63%] vs 118 [62%]), it was 13·6 months (10·9–16·2) versus 5·4 months (5·1–5·6; 0·32 [0·24–0·42]; p<0·0001). In the intention-to-treat population, it was 10·8 months (8·3–11·4) versus 5·4 months (5·3–5·5; 0·36 [0·30–0·45]; p<0·0001). Treatment-emergent adverse events of grade 3 or higher in the safety population (372 [99%] patients in the rucaparib group vs 189 [100%] in the placebo group) were reported in 209 (56%) patients in the rucaparib group versus 28 (15%) in the placebo group, the most common of which were anaemia or decreased haemoglobin concentration (70 [19%] vs one [1%]) and increased alanine or aspartate aminotransferase concentration (39 [10%] vs none).
Interpretation:
Across all primary analysis groups, rucaparib significantly improved progression-free survival in patients with platinum-sensitive ovarian cancer who had achieved a response to platinum-based chemotherapy. ARIEL3 provides further evidence that use of a poly(ADP-ribose) polymerase inhibitor in the maintenance treatment setting versus placebo could be considered a new standard of care for women with platinum-sensitive ovarian cancer following a complete or partial response to second-line or later platinum-based chemotherapy.
Funding:
Clovis Oncology
- …