1,277 research outputs found

    Modeling random telegraph noise under switched bias conditions using cyclostationary RTS noise

    Get PDF
    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF noise is often a limiting factor in the performance of the circuit. Measurements show that, compared to steady-state bias conditions, RTS noise can decrease but also increase when the device is subjected to switched bias conditions. We show that the simple model of a stationary noise generating process whose output is modulated by the bias voltage is not sufficient to explain the switched bias measurement results. Rather, we propose a model based on cyclostationary RTS noise generation. Using our model, we can correctly model a variety of different types of LF noise behavior that different MOSFETs exhibit under switched bias conditions. We show that the measurement results can be explained using realistic values for the bias dependency of /spl tau//sub c/ and /spl tau//sub e/

    Reducing MOSFET 1/f Noise and Power Consumption by "Switched Biasing"

    Get PDF
    Switched biasing is proposed as a technique for reducing the 1/f noise in MOSFET's. Conventional techniques, such as chopping or correlated double sampling, reduce the effect of 1/f noise in electronic circuits, whereas the switched biasing technique reduces the 1/f noise itself. Whereas noise reduction techniques generally lead to more power consumption, switched biasing can reduce the power consumption. It exploits an intriguing physical effect: cycling a MOS transistor from strong inversion to accumulation reduces its intrinsic 1/f noise. As the 1/f noise is reduced at its physical roots, high frequency circuits, in which 1/f noise is being upconverted, can also benefit. This is demonstrated by applying switched biasing in a 0.8 Âżm CMOS sawtooth oscillator. By periodically switching off the bias currents, during time intervals that they are not contributing to the circuit operation, a reduction of the 1/f noise induced phase noise by more than 8 dB is achieved, while the power consumption is also reduced by 30

    Visualisation Techniques for Random Telegraph Signals in MOSFETs

    Get PDF
    In the study of LF noise in MOSFETS, it has become clear that Random Telegraph Signals (RTS) are dominant. When a MOSFET is subjected to large-signal excitation, the RTS noise is influenced. In this paper, we present different visualizations of the transient behaviour of the RT

    Low Star Formation Rates for z=1 Early-Type Galaxies in the Very Deep GOODS-MIPS Imaging: Implications for their Optical/Near-Infrared Spectral Energy Distributions

    Get PDF
    We measure the obscured star formation in z~1 early-type galaxies. This constrains the influence of star formation on their optical/near-IR colors, which, we found, are redder than predicted by the model by Bruzual & Charlot (2003). From deep ACS imaging we construct a sample of 95 morphologically selected early-type galaxies in the HDF-N and CDF-S with spectroscopic redshifts in the range 0.85<z<1.15. We measure their 24 micron fluxes from the deep GOODS-MIPS imaging and derive the IR luminosities and star formation rates. The fraction of galaxies with >2 sigma detections (~25 muJy} is 17(-4,+9)%. Of the 15 galaxies with significant detections at least six have an AGN. Stacking the MIPS images of the galaxies without significant detections and adding the detected galaxies without AGN we find an upper limit on the mean star formation rate (SFR) of 5.2+/-3.0 Msol yr^-1, and on the mean specific SFR of 4.6+/-2.2 * 10^-11 yr^-1. Under the assumption that the average SFR will decline at the same rate as the cosmic average, the in situ growth in stellar mass of the early-type galaxy population is less than 14+/-7% between z=1 and the present. We show that the typically low IR luminosity and SFR imply that the effect of obscured star formation (or AGN) on their rest-frame optical/near-IR SEDs is negligible for ~90% of the galaxies in our sample. Hence, their optical/near-IR colors are most likely dominated by evolved stellar populations. This implies that the colors predicted by the Bruzual & Charlot (2003) model for stellar populations with ages similar to those of z~1 early-type galaxies (~1-3 Gyr) are most likely too blue, and that stellar masses of evolved, high-redshift galaxies can be overestimated by up to a factor of ~2.Comment: Accepted for publication in ApJ, 8 pages, 4 figures, 1 tabl

    Spatially Resolved Stellar Kinematics of Field Early-Type Galaxies at z=1: Evolution of the Rotation Rate

    Get PDF
    We use the spatial information of our previously published VLT/FORS2 absorption line spectroscopy to measure mean stellar velocity and velocity dispersion profiles of 25 field early-type galaxies at a median redshift z=0.97 (full range 0.6<z<1.2). This provides the first detailed study of early-type galaxy rotation at these redshifts. From surface brightness profiles from HST imaging we calculate two-integral oblate axisymmetric Jeans equation models for the observed kinematics. Fits to the data yield for each galaxy the degree of rotational support and the mass-to-light ratio M/L_Jeans. S0 and Sa galaxies are generally rotationally supported, whereas elliptical galaxies rotate less rapidly or not at all. Down to M(B)=-19.5 (corrected for luminosity evolution), we find no evidence for evolution in the fraction of rotating early-type (E+S0) galaxies between z=1 (63+/-11%) and the present (61+/-5%). We interpret this as evidence for little or no change in the field S0 fraction with redshift. We compare M/L_Jeans with M/L_vir inferred from the virial theorem and globally averaged quantities and assuming homologous evolution. There is good agreement for non-rotating (mostly E) galaxies. However, for rotationally supported galaxies (mostly S0) M/L_Jeans is on average ~40% higher than M/L_vir. We discuss possible explanations and the implications for the evolution of M/L between z=1 and the present and its dependence on mass.Comment: To appear in ApJ 683 (9 pages, 7 figures). Minor changes included to match published versio

    Major Merging: The Way to Make a Massive, Passive Galaxy

    Get PDF
    We analyze the projected axial ratio distribution, p(b/a), of galaxies that were spectroscopically selected from the Sloan Digital Sky Survey (DR6) to have low star-formation rates. For these quiescent galaxies we find a rather abrupt change in p(b/a) at a stellar mass of ~10^{11} M_sol: at higher masses there are hardly any galaxies with b/a<0.6, implying that essentially none of them have disk-like intrinsic shapes and must be spheroidal. This transition mass is ~3-4 times higher than the threshold mass above which quiescent galaxies dominate in number over star-forming galaxies, which suggests these mass scales are unrelated. At masses lower than ~10^{11} M_sol, quiescent galaxies show a large range in axial ratios, implying a mix of bulge- and disk-dominated galaxies. Our result strongly suggests that major merging is the most important, and perhaps only relevant, evolutionary channel to produce massive (>10^{11} M_sol), quiescent galaxies, as it inevitably results in spheroids.Comment: Minor changes to match published version in ApJ Letter

    The Dependence of Star Formation Rates on Stellar Mass and Environment at z~0.8

    Full text link
    We examine the star formation rates (SFRs) of galaxies in a redshift slice encompassing the z=0.834 cluster RX J0152.7-1357. We used a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph (IMACS) to identify galaxies with z<23.3 AB mag in diverse environments around the cluster out to projected distances of ~8 Mpc from the cluster center. We utilize a mass-limited sample (M>2x10^{10} M_sun) of 330 galaxies that were imaged by Spitzer MIPS at 24 micron to derive SFRs and study the dependence of specific SFR (SSFR) on stellar mass and environment. We find that the SFR and SSFR show a strong decrease with increasing local density, similar to the relation at z~0. Our result contrasts with other work at z~1 that find the SFR-density trend to reverse for luminosity-limited samples. These other results appear to be driven by star-formation in lower mass systems (M~10^{10} M_sun). Our results imply that the processes that shut down star-formation are present in groups and other dense regions in the field. Our data also suggest that the lower SFRs of galaxies in higher density environments may reflect a change in the ratio of star-forming to non-star-forming galaxies, rather than a change in SFRs. As a consequence, the SFRs of star-forming galaxies, in environments ranging from small groups to clusters, appear to be similar and largely unaffected by the local processes that truncate star-formation at z~0.8.Comment: 5 pages, 3 figures, accepted for publication in ApJ

    Mass-to-Light Ratios of Field Early-Type Galaxies at z~1 from Ultra-Deep Spectroscopy: Evidence for Mass-dependent Evolution

    Get PDF
    We present an analysis of the Fundamental Plane for a sample of 27 field early-type galaxies in the redshift range 0.6<z<1.15. The galaxies in this sample have high S/N spectra obtained at the VLT and high resolution imaging from the ACS. We find that the mean evolution in M/L of our sample is Deltaln(M/LB)=−1.74+/−0.16zDelta ln (M/L_B) = -1.74+/-0.16z, with a large galaxy-to-galaxy scatter. This value can be too low by 0.3 due to selection effects, resulting in Deltaln(M/LB)=−1.43+/−0.16zDelta ln (M/L_B) = -1.43+/-0.16z. The strong correlation between M/L and rest-frame color indicates that the observed scatter is not due to measurement errors, but due to intrinsic differences between the stellar populations of the galaxies. This pace of evolution is much faster than the evolution of cluster galaxies. However, we find that the measured M/L evolution strongly depends on galaxy mass. For galaxies with masses M>2x1011MsolM>2 x 10^11 Msol, we find no significant difference between the evolution of field and cluster galaxies: Deltaln(M/LB)=−1.20+/−0.18zforfieldgalaxiesandDelta ln (M/L_B) = -1.20+/-0.18z for field galaxies and Delta ln (M/L_B) = -1.12+/-0.06z$ for cluster galaxies. The relation between the measured M/L evolution and mass is partially due to selection effects. However, even when taking selection effects into account, we still find a relation between M/L evolution and mass, which is most likely caused by a lower mean age and a larger intrinsic scatter for low mass galaxies. Results from lensing early-type galaxies, which are mass-selected, show a very similar trend with mass. This, combined with our findings, provides evidence for down-sizing. Previous studies of the rate of evolution of field early-type galaxies found a large range of mutually exclusive values. We show that these differences are largely caused by the differences between fitting methods. (Abridged)Comment: figures 3 and 4 available at http://www.strw.leidenuniv.nl/~vdwel/private/FPpaper

    The Physical Origins of The Morphology-Density Relation: Evidence for Gas Stripping from the SDSS

    Get PDF
    We provide a physical interpretation and explanation of the morphology-density relation for galaxies, drawing on stellar masses, star formation rates, axis ratios and group halo masses from the Sloan Digital Sky Survey. We first re-cast the classical morphology-density relation in more quantitative terms, using low star formation rate (quiescence) as a proxy for early-type morphology and dark matter halo mass from a group catalog as a proxy for environmental density: for galaxies of a given stellar mass the quiescent fraction is found to increase with increasing dark matter halo mass. Our novel result is that - at a given stellar mass - quiescent galaxies are significantly flatter in dense environments, implying a higher fraction of disk galaxies. Supposing that the denser environments differ simply by a higher incidence of quiescent disk galaxies that are structurally similar to star-forming disk galaxies of similar mass, explains simultaneously and quantitatively these quiescence -nvironment and shape-environment relations. Our findings add considerable weight to the slow removal of gas as the main physical driver of the morphology-density relation, at the expense of other explanations.Comment: published in ApJ: http://adsabs.harvard.edu/abs/2010ApJ...714.1779

    The Evolution of Rest-Frame K-band Properties of Early-Type Galaxies from z=1 to the Present

    Get PDF
    We measure the evolution of the rest-frame K-band Fundamental Plane from z=1 to the present by using IRAC imaging of a sample of early-type galaxies in the Chandra Deep Field-South at z~1 with accurately measured dynamical masses. We find that M/LKM/L_K evolves as Δln⁥(M/LK)=(−1.18±0.10)z\Delta\ln{(M/L_K)}=(-1.18\pm0.10)z, which is slower than in the B-band (Δln⁥(M/LB)=(−1.46±0.09)z\Delta\ln{(M/L_B)}=(-1.46\pm0.09)z). In the B-band the evolution has been demonstrated to be strongly mass dependent. In the K-band we find a weaker trend: galaxies more massive than M=2×1011M⊙M=2\times10^{11}M_{\odot} evolve as Δln⁥(M/LK)=(−1.01±0.16)z\Delta\ln{(M/L_K)}=(-1.01\pm0.16)z; less massive galaxies evolve as Δln⁥(M/LK)=(−1.27±0.11)z\Delta\ln{(M/L_K)}=(-1.27\pm0.11)z. As expected from stellar population models the evolution in M/LKM/L_K is slower than the evolution in M/LBM/L_B. However, when we make a quantitative comparison, we find that the single burst Bruzual-Charlot models do not fit the results well, unless large dust opacities are allowed at z=1. Models with a flat IMF fit better, Maraston models with a different treatment of AGB stars fit best. These results show that the interpretation of rest-frame near-IR photometry is severely hampered by model uncertainties and therefore that the determination of galaxy masses from rest-frame near-IR photometry may be harder than was thought before.Comment: 5 pages, 3 figures, Accepted for publication in ApJ
    • 

    corecore