18 research outputs found

    Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain

    Get PDF
    Background Since its discovery in 2015, the mobile colistin resistance gene mcr-1 has been reported in bacteria from > 50 countries. Although aquaculture-associated bacteria may act as a significant reservoir for colistin resistance, systematic investigations of mcr-1 in the aquaculture supply chain are scarce. Objectives We investigated the presence of colistin resistance determinants in the aquaculture supply chain in south China and determined their characteristics and relationships. Methods A total of 250 samples were collected from a duck-fish integrated fishery, slaughter house, and market in Guangdong Province, China, in July 2017. Colistin-resistant bacteria were isolated on colistin-supplemented CHROMagar Orientation plates, and the species were identified by matrix-assisted laser desorption/ionization time-of-flight assay. The presence of mcr genes was confirmed by polymerase chain reaction analysis. We examined the minimum inhibitory concentrations (MICs) of 16 antimicrobial agents against the isolates using agar diffusion and broth microdilution methods. Whole-genome sequencing (WGS) was used to explore the molecular characteristics and relationships of mcr-1-positive Escherichia coli (MCRPEC). Results Overall, 143 (57.2%) colistin-resistant bacteria were isolated, of which, 56 (22.4%, including 54 Escherichia coli and two Klebsiella pneumoniae) and four Aeromonas species were positive for mcr-1 and mcr-3, respectively. The animal-derived MCRPEC were significantly more prevalent in integrated fishery samples (40.0%) than those in market (4.8%, P 90%) but were susceptible to carbapenems and tigecycline. WGS analysis suggested that mcr-1 was mainly contained on plasmids, including IncHI2 (29.6%), IncI2 (27.8%), IncX4 (14.8%), and IncP (11.1%). Genomic analysis suggested mcr-1 transmission via the aquatic food chain. Conclusions MCRPEC were highly prevalent in the aquaculture supply chain, with the isolates showing resistance to most antibiotics. The data suggested mcr-1 could be transferred to humans via the aquatic food chain. Taking the “One Health” perspective, aquaculture should be incorporated into systematic surveillance programs with animal, human, and environmental monitoring

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Screening of Food Additives and Plant Extracts against Candida Albicans in Vitro for Prevention of Denture Stomatitis

    Get PDF
    AbstractDenture stomatitis is mainly caused by a fungal species Candida albicans. The antifungal agents tested in this experiment are highly secure, especially essential oils, which have no residue after treatment. The agar well diffusion and disc diffusion methods were used to determine the antifungal activity, and the agar dilution method to determine the minimal inhibitory concentrations (MICs) of food additives and plant extracts. Butyl paraben sodium had the lowest MIC value of 0.25 mg·mL-1, followed by chitosan, 0.5 mg·mL-1, among the five food additives tested, and that thyme essential oil exhibited its MIC of 0.25ΌL·mL-1, the best among the five plant extracts tested. In view of its strong antifungal activity and user-friendliness (both liquid and fumigation usages), thyme essential oil may be used as a natural disinfectant for the prevention of denture stomatitis

    Orthogonal Design Study on Factors Affecting the Determination of Common Odors in Water Samples by Headspace Solid-Phase Microextraction Coupled to GC/MS

    Get PDF
    Geosmin and 2-MIB are responsible for the majority of earthy and musty events related to the drinking water. These two odorants have extremely low odor threshold concentrations at ng L−1 level in the water, so a simple and sensitive method for the analysis of such trace levels was developed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. In this study, the orthogonal experiment design L32 (49) was applied to arrange and optimize experimental conditions. The optimum was the following: temperatures of extraction and desorption, 65°C and 260°C, respectively; times of extraction and desorption, 30 min and 5 min, respectively; ionic strength, 25% (w/v); rotate-speed, 600 rpm; solution pH, 5.0. Under the optimized conditions, limits of detection (S/N=3) were 0.04 and 0.13 ng L−1 for geosmin and 2-MIB, respectively. Calculated calibration curves gave high levels of linearity with a correlation coefficient value of 0.9999 for them. Finally, the proposed method was applied to water samples, which were previously analyzed and confirmed to be free of target analytes. Besides, the proposal method was applied to test environmental water samples. The RSDs were 2.75%~3.80% and 4.35%~7.6% for geosmin and 2-MIB, respectively, and the recoveries were 91%~107% and 91%~104% for geosmin and 2-MIB, respectively

    Preparation of Cu-Cr-Zr Alloy by Laser Powder Bed Fusion: Parameter Optimization, Microstructure, Mechanical and Thermal Properties for Microelectronic Applications

    No full text
    Laser powder bed fusion (LPBF) technology is beneficial for the fabrication of thermal conductive materials, integrating with the predesigned structure, which shows a great potential for high heat dissipation applications. Here, a Cu–Cr–Zr alloy with relative density of 98.53% is successfully prepared by LPBF after process optimization. On this basis, microstructure, phase identification, precipitates, mechanical and thermal properties are investigated. The results demonstrate that the surface morphology of microstructure is affected by laser energy density, the α-Cu is the main phase of the LPBF sample and the virgin powder, the size of Cr spherical precipitates in some areas is about 1 ÎŒm, and the tensile fracture mode is a mixed ductile–brittle mode. Furthermore, the Vickers hardness of the LPBF Cu–Cr–Zr sample is 70.7 HV to 106.1 HV, which is higher than that of LPBF Cu and a wrought C11000 Cu, and the difference in Vickers hardness of different planes reflects the anisotropy. Ultimately, the two types of Cu–Cr–Zr alloy heat sinks are successfully fabricated, and their heat transfer coefficients are positively correlated with the volume flow. The heat dissipation performance of the cylindrical micro-needle heat sink is better, and its maximum heat transfer coefficient is 3887 W/(m2·K)

    Analysis of Five Earthy-Musty Odorants in Environmental Water by HS-SPME/GC-MS

    No full text
    The pressing issue of earthy and musty odor compounds in natural waters, which can affect the organoleptic properties of drinking water, makes it a public health concern. A simple and sensitive method for simultaneous analysis of five odorants in environmental water was developed by headspace solid-phase microextraction (HS-SPME) coupled to chromatography-mass spectrometry (GC-MS), including geosmin (GSM) and 2-methylisoborneol (2-MIB), as well as dimethyl trisulfide (DMTS), ÎČ-cyclocitral, and ÎČ-ionone. Based on the simple modification of original magnetic stirrer purchased from CORNING (USA), the five target compounds can be separated within 23 min, and the calibration curves show good linearity with a correlation coefficient above 0.999 (levels = 5). The limits of detection (LOD) are all below 1.3 ng L−1, and the relative standard deviation (%RSD) is between 4.4% and 9.9% (n = 7) and recoveries of the analytes from water samples are between 86.2% and 112.3%. In addition, the storage time experiment indicated that the concentrations did not change significantly for GSM and 2-MIB if they were stored in canonical environment. In conclusion, the method in this study could be applied for monitoring these five odorants in natural waters

    Changes in advanced protein structure during dense phase carbon dioxide induced gel formation in golden pompano surimi correlate with gel strength

    Get PDF
    Changes in protein structure are closely related to gel strength. Dense phase carbon dioxide (DPCD) treatment is an excellent non-thermal food processing method that can be used to induce gel formation in surimi. The sensory, water holding capacity and gel strength of DPCD induced gels are superior to heat-induced gels. Fourier-transform infrared spectroscopy was used to investigate the role of DPCD in the quality of golden pompano surimi gels and changes in protein structure. The intermolecular forces of surimi gels were analyzed in terms of ionic and hydrogen bonds, disulfide covalent and non-disulfide covalent bonds, as well as hydrophobic interactions. Correlation analysis was used to investigate the relationship between the changes in advanced protein structure and gel strength during DPCD-induced gel formation in golden pompano surimi. The results showed that the α-helix and random coil levels of surimi gel were significantly decreased (p &lt; 0.05), while the ÎČ-sheet and ÎČ-turn content was significantly increased (p &lt; 0.05). The number of ionic and hydrogen bonds in gel proteins decreased significantly (p &lt; 0.05), while the hydrophobic interactions, and disulfide and non-disulfide covalent bonds increased significantly (p &lt; 0.05) after DPCD treatment. Correlation analysis showed that ÎČ-sheets, ÎČ-turns, hydrophobic interactions, and disulfide and non-disulfide covalent bonds were strongly positively correlated with gel strength, whereas α-helices, random coils, and ionic and hydrogen bonds were strongly negatively correlated with gel strength. Therefore, the α-helix and random coil structures of surimi gels were transformed into ÎČ-sheet and ÎČ-turn structures after DPCD treatment. Hydrophobic interactions, and disulfide and non-disulfide covalent bonds were the main intermolecular forces during the DPCD-induced gel formation of surimi. Ionic and hydrogen bonds were not the main intermolecular forces. The results provide fundamental data for elucidating the mechanism of DPCD-induced protein gel formation

    HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells

    Full text link
    Activator protein 1 (AP-1) is a transcriptional factor composed of the dimeric members of bZIP proteins, which are frequently deregulated in human cancer cells. In this study, we aimed to identify an oncogenic AP-1 dimer critical for the proliferation of neuroblastoma cells and to investigate whether histone deacetylase inhibitors (HDACIs), a new generation of anticancer agents, could target the AP-1 dimer. We report here that HDACIs including trichostatin A, suberoylanilidehydroxamic acid, valproic acid and M344 can transcriptionally suppress both c-Jun and Fra-1, preceding their inhibition of cell growth. c-Jun preferentially interacting with Fra-1 as a heterodimer is responsible for AP-1 activity and critical for cell growth. Mechanistically, HDACIs suppress Fra-1 expression through transcriptionally downregulating Raf1 and subsequently decreasing MEK1/2-ERK1/2 activity. Unexpectedly, HDACI treatment caused MKK7 downregulation at both the protein and mRNA levels. Deletion analysis of the 5â€Č-flanking sequence of the MKK7 gene revealed that a major element responsible for the downregulation by HDACI is located at -149 to -3 relative to the transcriptional start site. Knockdown of MKK7 but not MKK4 remarkably decreased JNK/c-Jun activity and proliferation, whereas ectopic MKK7-JNK1 reversed HDACI-induced c-Jun suppression. Furthermore, suppression of both MKK-7/c-Jun and Raf-1/Fra-1 activities was involved in the tumor growth inhibitory effects induced by SAHA in SH-SY5Y xenograft mice. Collectively, these findings demonstrated that c-Jun/Fra-1 dimer is critical for neuroblastoma cell growth and that HDACIs act as effective suppressors of the two oncogenes through transcriptionally downregulating MKK7 and Raf1
    corecore