334 research outputs found

    In situ grazing resistance of Vibrio cholerae in the marine environment

    Full text link
    Previous laboratory experiments revealed that Vibrio cholerae A1552 biofilms secrete an antiprotozoal factor that prevents Rhynchomonas nasuta from growing and thus prevents grazing losses. The antiprotozoal factor is regulated by the quorum-sensing response regulator, HapR. Here, we investigate whether the antiprotozoal activity is ecologically relevant. Experiments were conducted in the field as well as under field-like conditions in the laboratory to assess the grazing resistance of V. cholerae A1552 and N16961 (natural frameshift mutation in hapR) biofilms to R. nasuta and Cafeteria roenbergensis. In laboratory experiments exposing the predators to V. cholerae grown in seawater containing high and low glucose concentrations, we determined that V. cholerae biofilms showed increased resistance towards grazing by both predators as glucose levels decreased. The relative resistance of the V. cholerae strains to the grazers under semi-field conditions was similar to that observed in situ. Therefore, the antipredator defense is environmentally relevant and not lost when biofilms are grown in an open system in the marine environment. The hapR mutant still exhibited some resistance to both predators and this suggests that V. cholerae may coordinate antipredator defenses by a combination of density-dependent regulation and environmental sensing to protect itself from predators in its natural habitat. © 2011 Federation of European Microbiological Societies

    Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra)

    Get PDF
    Caspers B, Junge C, Weitere M, Steinfartz S. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra). Frontiers in Zoology. 2009;6(1):13.Background: Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra), as found in Middle Europe (Germany), can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage. Results: Despite large genetic distances with F-ST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage. Conclusion: A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds

    Autor*innen und weitere Beteiligte

    Get PDF
    In diesem Abschnitt werden die Autor*innen und weitere Personen, die an der Veröffentlichung beteiligt gewesen sind, aufgeführt. This section provides information on the authors and other people involved in the publication of this issue

    Autor*innen und weitere Beteiligte

    Get PDF
    In diesem Abschnitt werden die Autor*innen und weitere Personen, die an der Veröffentlichung beteiligt gewesen sind, aufgeführt. This section provides information on the authors and other people involved in the publication of this issue

    Nutrient and carbon dynamics along the river-estuary-ocean continuum on Central European scale

    Get PDF
    Nutrient and carbon dynamics within the river-estuary-coastal water systems are key processes to understand the matter fluxes from the terrestrial environment to the ocean. In a large-scale study we analysed those dynamics with the focus of the prevailing low water conditions by following a sampling approach based on the travel time of water. We started with a nearly Lagrangian sampling along the River Elbe (German part; 580 km within 8 days travel time). After a subsequent investigation of the estuary, the plume of the river was followed by raster sampling the German Bight (North Sea) using three ships simultaneously. In the river, intensive growth of phytoplankton was determined connected with high oxygen saturation and pH values as well as under-saturation of CO2, whereas concentrations of dissolved nutrients declined. In the estuary, the Elbe shifted from an autotrophic to a heterotrophic system: Phytoplankton died off upstream of the salinity gradient causing minima in oxygen saturation and pH, supersaturation of CO2, and a release of nutrients. In the coastal region, phytoplankton and nutrient concentrations were low, oxygen close to saturation, and pH in a typical marine range. We detected a positive relationship between pH values and oxygen saturation and a negative one between pCO2 and oxygen saturation. Corresponding to the significant particulate nutrient flux via phytoplankton, flux rates of dissolved nutrients from the river into the estuary were low and determined by depleted concentrations. In contrast, fluxes from the estuary to the coastal waters were higher and the pattern was determined by tidal currents. Overall, the presented observation approach is appropriate to better understand land-ocean fluxes, particularly if it is performed under different hydrological conditions including extremes and seems to be suitable to investigate the impact of such events in freshwater on coastal systems in future. The study was conducted within the frame of the Helmholtz MOSES initiative (Modular Observation Solutions for Earth Systems) targeting processes and impacts of hydrological extremes

    Hydrodynamics Alter the Tolerance of Autotrophic Biofilm Communities Toward Herbicides

    Get PDF
    Multiple stressors pose potential risk to aquatic ecosystems and are the main reasons for failing ecological quality standards. However, mechanisms how multiple stressors act on aquatic community structure and functioning are poorly understood. This is especially true for two important stressors types, hydrodynamic alterations and toxicants. Here we perform a mesocosm experiment in hydraulic flumes connected as a bypass to a natural stream to test the interactive effects of both factors on natural (inoculated from streams water) biofilms. Biofilms, i.e., the community of autotrophic and heterotrophic microorganisms and their extracellular polymeric substances (EPS) in association with substratum, are key players in stream functioning. We hypothesized (i) that the tolerance of biofilms toward toxicants (the herbicide Prometryn) decreases with increasing hydraulic stress. As EPS is known as an absorber of chemicals, we hypothesize (ii) that the EPS to cell ratio correlates with both hydraulic stress and herbicide tolerance. Tolerance values were derived from concentration-response assays. Both, the herbicide tolerance and the biovolume of the EPS significantly correlated with the turbulent kinetic energy (TKE), while the diversity of diatoms (the dominant group within the stream biofilms) increased with flow velocity. This indicates that the positive effect of TKE on community tolerance was mediated by turbulence-induced changes in the EPS biovolume. This conclusion was supported by a second experiment, showing decreasing effects of the herbicide to a diatom biofilm (Nitzschia palea) with increasing content of artificial EPS. We conclude that increasing hydrodynamic forces in streams result in an increasing tolerance of microbial communities toward chemical pollution by changes in EPS-mediated bioavailability of toxicants

    The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

    Get PDF
    This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows

    Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia

    Get PDF
    In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide–gated channels in the ciliary membrane enabling Ca2+ influx. The ensuing elevation of the intraciliary Ca2+ concentration opens Ca2+-activated Cl− channels, which mediate an excitatory Cl− efflux from the cilia. In order for the response to terminate, the Cl− channel must close, which requires that the intraciliary Ca2+ concentration return to basal levels. Hitherto, the extrusion of Ca2+ from the cilia has been thought to depend principally on a Na+–Ca2+ exchanger
    • …
    corecore