5 research outputs found

    Hot Upper Mantle Beneath the Tristan da Cunha Hotspot From Probabilistic Rayleigh-Wave Inversion and Petrological Modeling

    Get PDF
    Understanding the enigmatic intraplate volcanism in the Tristan da Cunha region requires knowledge of the temperature of the lithosphere and asthenosphere beneath it. We measured phase-velocity curves of Rayleigh waves using cross-correlation of teleseismic seismograms from an array of ocean-bottom seismometers around Tristan, constrained a region-average, shear-velocity structure, and inferred the temperature of the lithosphere and asthenosphere beneath the hotspot. The ocean-bottom data set presented some challenges, which required data-processing and measurement approaches different from those tuned for land-based arrays of stations. Having derived a robust, phase-velocity curve for the Tristan area, we inverted it for a shear wave velocity profile using a probabilistic (Markov chain Monte Carlo) approach. The model shows a pronounced low-velocity anomaly from 70 to at least 120 km depth. VS in the low velocity zone is 4.1-4.2 km/s, not as low as reported for Hawaii (∼4.0 km/s), which probably indicates a less pronounced thermal anomaly and, possibly, less partial melting. Petrological modeling shows that the seismic and bathymetry data are consistent with a moderately hot mantle (mantle potential temperature of 1,410-1,430°C, an excess of about 50-120°C compared to the global average) and a melt fraction smaller than 1%. Both purely seismic inversions and petrological modeling indicate a lithospheric thickness of 65-70 km, consistent with recent estimates from receiver functions. The presence of warmer-than-average asthenosphere beneath Tristan is consistent with a hot upwelling (plume) from the deep mantle. However, the excess temperature we determine is smaller than that reported for some other major hotspots, in particular Hawaii

    Reducing Storage Losses of Organic Apples by Plasma Processed Air (PPA)

    No full text
    The consumer demand for organic food including apples is increasing worldwide. Despite favorable environmental and health benefits, organic farming bears also disadvantages like high amounts of fruit losses due to storage rot. A novel treatment with plasma-processed air (PPA) to sanitize organic apples is investigated. The plasma source for the generation of PPA was operated at a frequency of 2.45 GHz, a power output of 1.1 kW and a gas flow of 18 standard liters per minute. The antimicrobial efficiency of the PPA was tested on the natural load of organic apples (cultivar Natyra) with a load ranging from 104 to 106 CFU/mL in an experimental laboratory setup. A larger application was applied on artificially inoculated (Pseudomonas fluorescens~108 CFU/mL and Pezicula malicorticis~106 CFU/mL) organic apples to test the up-scalability of the PPA treatment. The apples were photographically documented and their texture was analyzed during the 26-day storage phase to investigate the influence of the PPA treatment on the appearance of the apples. The laboratory experiments resulted in a log10-reduction of one to two log10 levels compared to untreated and compressed-air-treated apples. For apples inoculated with P. fluorescens, the up-scaled procedure resulted in up to four levels of log10 reduction. In apples inoculated with P. malicorticis, the up-scaled procedure resulted in no reduction. This indicates that the application of PPA to organic apples can be effective for bacteria but needs to be optimized for fungi. Therefore, further testing is needed to validate the results

    The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive

    No full text
    This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces
    corecore