8,288 research outputs found

    Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    Get PDF
    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated

    Advanced 2-frequency ocean sensing radar using high resolution antenna beams

    Get PDF
    The opportunity to use a large space antenna system for remote sensing applications permits the creation of an advanced ocean sensing radar that combines the abilities of previously developed techniques. The 15 meter antenna will permit much higher angular and spatial resolution at the surface that will lead to techniques of observing ocean wave heights and the directional spectrum that had not previously been feasible from space. At the same time, sensors to measure ocean surface winds can be in operation and the data from both can be combined to increase the accuracy of each individual sensor. The existing capabilities and sensor techniques with typical data characteristics for the individual measurement of sea surface quantities are outlined

    Distortion-Rate Function of Sub-Nyquist Sampled Gaussian Sources

    Full text link
    The amount of information lost in sub-Nyquist sampling of a continuous-time Gaussian stationary process is quantified. We consider a combined source coding and sub-Nyquist reconstruction problem in which the input to the encoder is a noisy sub-Nyquist sampled version of the analog source. We first derive an expression for the mean squared error in the reconstruction of the process from a noisy and information rate-limited version of its samples. This expression is a function of the sampling frequency and the average number of bits describing each sample. It is given as the sum of two terms: Minimum mean square error in estimating the source from its noisy but otherwise fully observed sub-Nyquist samples, and a second term obtained by reverse waterfilling over an average of spectral densities associated with the polyphase components of the source. We extend this result to multi-branch uniform sampling, where the samples are available through a set of parallel channels with a uniform sampler and a pre-sampling filter in each branch. Further optimization to reduce distortion is then performed over the pre-sampling filters, and an optimal set of pre-sampling filters associated with the statistics of the input signal and the sampling frequency is found. This results in an expression for the minimal possible distortion achievable under any analog to digital conversion scheme involving uniform sampling and linear filtering. These results thus unify the Shannon-Whittaker-Kotelnikov sampling theorem and Shannon rate-distortion theory for Gaussian sources.Comment: Accepted for publication at the IEEE transactions on information theor

    Global environmental effects of impact-generated aerosols: Results from a general circulation model

    Get PDF
    Cooling and darkening at Earth's surface are expected to result from the interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet, according to the one-dimensional radioactive-convective atmospheric model (RCM) of Pollack et al. An analogous three-dimensional general circulation model (GCM) simulation obtains the same basic result as the RCM but there are important differences in detail. In the GCM simulation the heat capacity of the oceans, not included in the RCM, substantially mitigates land surface cooling. On the other hand, the GCM's low heat capacity surface allows surface temperatures to drop much more rapidly than reported by Pollack et al. These two differences between RCM and GCM simulations were noted previously in studies of nuclear winter; GCM results for comet/asteroid winter, however, are much more severe than for nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on Earth. In the simulation the global average of land surface temperature drops to the freezing point in just 4.5 days, one-tenth the time required in the Pollack et al. simulation. In addition to the standard case of Pollack et al., which represents the collision of a 10-km diameter asteroid with Earth, additional scenarios are considered ranging from the statistically more frequent impacts of smaller asteroids to the collision of Halley's comet with Earth. In the latter case the kinetic energy of impact is extremely large due to the head-on collision resulting from Halley's retrograde orbit

    Keck Pencil-Beam Survey for Faint Kuiper Belt Objects

    Get PDF
    We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. A single 0.01 square degree field is imaged 29 times for a total integration time of 4.8 hr. Combining exposures in software allows the detection of Kuiper Belt Objects (KBOs) having visual magnitude V < 27.9. Two new KBOs are discovered. One object having V = 25.5 lies at a probable heliocentric distance d = 33 AU. The second object at V = 27.2 is located at d = 44 AU. Both KBOs have diameters of about 50 km, assuming comet-like albedos of 4%. Data from all surveys are pooled to construct the luminosity function from red magnitude R = 20 to 27. The cumulative number of objects per square degree, N (< R), is fitted to a power law of the form log_(10) N = 0.52 (R - 23.5). Differences between power laws reported in the literature are due mainly to which survey data are incorporated, and not to the method of fitting. The luminosity function is consistent with a power-law size distribution for objects having diameters s = 50 to 500 km; dn ~ s^(-q) ds, where the differential size index q = 3.6 +/- 0.1. The distribution is such that the smallest objects possess most of the surface area, but the largest bodies contain the bulk of the mass. Though our inferred size index nearly matches that derived by Dohnanyi (1969), it is unknown whether catastrophic collisions are responsible for shaping the size distribution. Implications of the absence of detections of classical KBOs beyond 50 AU are discussed.Comment: Accepted to AJ. Final proof-edited version: references added, discussion of G98 revised in sections 4.3 and 5.

    Are there compact heavy four-quark bound states?

    Get PDF
    We present an exact method to study four-quark systems based on the hyperspherical harmonics formalism. We apply it to several physical systems of interest containing two heavy and two light quarks using different quark-quark potentials. Our conclusions mark the boundaries for the possible existence of compact, non-molecular, four-quark bound states. While QQnˉnˉQQ\bar n \bar n states may be stable in nature, the stability of QQˉnnˉQ\bar Qn \bar n states would imply the existence of quark correlations not taken into account by simple quark dynamical modelsComment: 10 pages, 1 figure. Accepted for publication in Phys. Rev.

    Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss.

    Get PDF
    Many genes can be deleted with little phenotypic consequences. By what mechanism and to what extent the presence of duplicate genes in the genome contributes to this robustness against deletions has been the subject of considerable interest. Here, we exploit the availability of high-density genetic interaction maps to provide direct support for the role of backup compensation, where functionally overlapping duplicates cover for the loss of their paralog. However, we find that the overall contribution of duplicates to robustness against null mutations is low ( approximately 25%). The ability to directly identify buffering paralogs allowed us to further study their properties, and how they differ from non-buffering duplicates. Using environmental sensitivity profiles as well as quantitative genetic interaction spectra as high-resolution phenotypes, we establish that even duplicate pairs with compensation capacity exhibit rich and typically non-overlapping deletion phenotypes, and are thus unable to comprehensively cover against loss of their paralog. Our findings reconcile the fact that duplicates can compensate for each other's loss under a limited number of conditions with the evolutionary instability of genes whose loss is not associated with a phenotypic penalty

    Promoting Partnerships for Student Success: Lessons from the SSPIRE Initiative

    Get PDF
    The Student Support Partnership Integrating Resources and Education (SSPIRE) initiative aimed to increase the success of young, low-income, and academically underprepared California community college students by helping colleges strengthen their support services and better integrate these services with academic instruction. This report describes what the nine participating community colleges did to meet the goals of SSPIRE and offers lessons for other institutions drawn from MDRC's research on the initiative

    Edwards-Wilkinson surface over a spherical substrate: 1/f1/f noise in the height fluctuations

    Full text link
    We study the steady state fluctuations of an Edwards-Wilkinson type surface with the substrate taken to be a sphere. We show that the height fluctuations on circles at a given latitude has the effective action of a perfect Gaussian 1/f1/f noise, just as in the case of fixed radius circles on an infinite planar substrate. The effective surface tension, which is the overall coefficient of the action, does not depend on the latitude angle of the circles.Comment: 6 page
    corecore