1,571 research outputs found

    Supersolutions for a class of semilinear heat equations

    Full text link
    A semilinear heat equation ut=Δu+f(u)u_{t}=\Delta u+f(u) with nonnegative initial data in a subset of L1(Ω)L^{1}(\Omega) is considered under the assumption that ff is nonnegative and nondecreasing and ΩRn\Omega\subseteq \R^{n}. A simple technique for proving existence and regularity based on the existence of supersolutions is presented, then a method of construction of local and global supersolutions is proposed. This approach is applied to the model case f(s)=spf(s)=s^{p}, ϕLq(Ω)\phi\in L^{q}(\Omega): new sufficient conditions for the existence of local and global classical solutions are derived in the critical and subcritical range of parameters. Some possible generalisations of the method to a broader class of equations are discussed.Comment: Expanded version of the previous submission arXiv:1111.0258v1. 14 page

    Vacuum ultraviolet radiation and solid state physics semiannual status reports no. 1, 2, and 3, period ending 28 feb. 1963

    Get PDF
    Spectroscopic instruments for vacuum ultraviolet radiation stud

    Vacuum ultraviolet radiation and solid state physics Semiannual status report no. 7, period ending 31 Aug. 1965

    Get PDF
    Vacuum ultraviolet radiation and solid state physics - optical constants for barium and silver surfaces and thin film

    Instrumentation problems in the vacuum ultraviolet below 1000 angstroms

    Get PDF
    Improved techniques for solving inherent instrumentation problems in vacuum ultraviolet below 1000 Angstrom

    The nonlinear heat equation involving highly singular initial values and new blowup and life span results

    Full text link
    In this paper we prove local existence of solutions to the nonlinear heat equation ut=Δu+auαu,  t(0,T),  x=(x1,,xN)RN,  a=±1,  α>0;u_t = \Delta u +a |u|^\alpha u, \; t\in(0,T),\; x=(x_1,\,\cdots,\, x_N)\in {\mathbb R}^N,\; a = \pm 1,\; \alpha>0; with initial value u(0)Lloc1(RN{0})u(0)\in L^1_{\rm{loc}}\left({\mathbb R}^N\setminus\{0\}\right), anti-symmetric with respect to x1,  x2,  ,  xmx_1,\; x_2,\; \cdots,\; x_m and u(0)C(1)m12m(xγ)|u(0)|\leq C(-1)^m\partial_{1}\partial_{2}\cdot \cdot \cdot \partial_{m}(|x|^{-\gamma}) for x1>0,  ,  xm>0,x_1>0,\; \cdots,\; x_m>0, where C>0C>0 is a constant, m{1,  2,  ,  N},m\in \{1,\; 2,\; \cdots,\; N\}, 0<γ<N0<\gamma<N and 0<α<2/(γ+m).0<\alpha<2/(\gamma+m). This gives a local existence result with highly singular initial values. As an application, for a=1,a=1, we establish new blowup criteria for 0<α2/(γ+m)0<\alpha\leq 2/(\gamma+m), including the case m=0.m=0. Moreover, if (N4)α<2,(N-4)\alpha<2, we prove the existence of initial values u0=λf,u_0 = \lambda f, for which the resulting solution blows up in finite time Tmax(λf),T_{\max}(\lambda f), if λ>0\lambda>0 is sufficiently small. We also construct blowing up solutions with initial data λnf\lambda_n f such that λn[(1αγ+m2)1]Tmax(λnf)\lambda_n^{[({1\over \alpha}-{\gamma+m\over 2})^{-1}]}T_{\max}(\lambda_n f) has different finite limits along different sequences λn0\lambda_n\to 0. Our result extends the known "small lambda" blow up results for new values of α\alpha and a new class of initial data.Comment: Submitte

    Standing waves of the complex Ginzburg-Landau equation

    Full text link
    We prove the existence of nontrivial standing wave solutions of the complex Ginzburg-Landau equation ϕt=eiθΔϕ+eiγϕαϕ\phi_t = e^{i\theta} \Delta \phi + e^{i\gamma} |\phi |^\alpha \phi with periodic boundary conditions. Our result includes all values of θ\theta and γ\gamma for which cosθcosγ>0\cos \theta \cos \gamma >0, but requires that α>0\alpha >0 be sufficiently small

    Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value

    Full text link
    We consider the nonlinear heat equation utΔu=uαuu_t - \Delta u = |u|^\alpha u on RN{\mathbb R}^N, where α>0\alpha >0 and N1N\ge 1. We prove that in the range 000 0, there exist infinitely many sign-changing, self-similar solutions to the Cauchy problem with initial value u0(x)=μx2αu_0 (x)= \mu |x|^{-\frac {2} {\alpha }}. The construction is based on the analysis of the related inverted profile equation. In particular, we construct (sign-changing) self-similar solutions for positive initial values for which it is known that there does not exist any local, nonnegative solution

    A Fujita-type blowup result and low energy scattering for a nonlinear Schr\"o\-din\-ger equation

    Full text link
    In this paper we consider the nonlinear Schr\"o\-din\-ger equation iut+Δu+κuαu=0i u_t +\Delta u +\kappa |u|^\alpha u=0. We prove that if α<2N\alpha <\frac {2} {N} and κ<0\Im \kappa <0, then every nontrivial H1H^1-solution blows up in finite or infinite time. In the case α>2N\alpha >\frac {2} {N} and κC\kappa \in {\mathbb C}, we improve the existing low energy scattering results in dimensions N7N\ge 7. More precisely, we prove that if 8N+N2+16N<α4N \frac {8} {N + \sqrt{ N^2 +16N }} < \alpha \le \frac {4} {N} , then small data give rise to global, scattering solutions in H1H^1
    corecore