research

Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value

Abstract

We consider the nonlinear heat equation utΔu=uαuu_t - \Delta u = |u|^\alpha u on RN{\mathbb R}^N, where α>0\alpha >0 and N1N\ge 1. We prove that in the range 000 0, there exist infinitely many sign-changing, self-similar solutions to the Cauchy problem with initial value u0(x)=μx2αu_0 (x)= \mu |x|^{-\frac {2} {\alpha }}. The construction is based on the analysis of the related inverted profile equation. In particular, we construct (sign-changing) self-similar solutions for positive initial values for which it is known that there does not exist any local, nonnegative solution

    Similar works

    Full text

    thumbnail-image

    Available Versions