research

Supersolutions for a class of semilinear heat equations

Abstract

A semilinear heat equation ut=Δu+f(u)u_{t}=\Delta u+f(u) with nonnegative initial data in a subset of L1(Ω)L^{1}(\Omega) is considered under the assumption that ff is nonnegative and nondecreasing and ΩRn\Omega\subseteq \R^{n}. A simple technique for proving existence and regularity based on the existence of supersolutions is presented, then a method of construction of local and global supersolutions is proposed. This approach is applied to the model case f(s)=spf(s)=s^{p}, ϕLq(Ω)\phi\in L^{q}(\Omega): new sufficient conditions for the existence of local and global classical solutions are derived in the critical and subcritical range of parameters. Some possible generalisations of the method to a broader class of equations are discussed.Comment: Expanded version of the previous submission arXiv:1111.0258v1. 14 page

    Similar works