65 research outputs found

    Anisotropy effects on the plasmonic response of nanoparticle dimers

    Get PDF
    We present an ab initio study of the anisotropy and atomic relaxation effects on the optical properties of nanoparticle dimers. Special emphasis is placed on the hybridization process of localized surface plasmons, plasmon-mediated photoinduced currents, and electric-field enhancement in the dimer junction. We show that there is a critical range of separations between the clusters (0.1–0.5 nm) in which the detailed atomic structure in the junction and the relative orientation of the nanoparticles have to be considered to obtain quantitative predictions for realistic nanoplasmonic devices. It is worth noting that this regime is characterized by the emergence of electron tunneling as a response to the driven electromagnetic field. The orientation of the particles not only modifies the attainable electric field enhancement but can lead to qualitative changes in the optical absorption spectrum of the system.We thankfully acknowledge financial support by the European Research Council (ERC-2010-AdG Proposal No. 267374 and ERC-2011-AdG Proposal No. 290891), the Spanish Government (Grants MAT2011-28581-C02-01, FIS2013-46159-C3-1-P, and MAT2014-53432-C5-5-R), and the Basque Country Government (Grupos Consolidados IT-578-13).Peer Reviewe

    Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    Get PDF
    Electronic and optical properties of silver clusters were calculated using two different \textit{ab initio} approaches: 1) based on all-electron full-potential linearized-augmented plane-wave method and 2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter 1.7\sim 1.7\,nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147_\mathrm{147}, gives way to a dominant plasmon peak localized at wavelengths 350\,nmλ\le\lambda\le 600\,nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters

    Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods - an ab initio TDDFT study

    No full text
    It is known that the surface-plasmon resonance (SPR) in small spherical Au nanoparticles of about 2 nm is strongly damped. We demonstrate that small Au nanorods with a high aspect ratio develop a strong longitudinal SPR, with intensity comparable to that in Ag rods, as soon as the resonance energy drops below the onset of the interband transitions due to the geometry. We present ab initio calculations of time-dependent density-functional theory of rods with lengths of up to 7 nm. By changing the length and width, not only the energy but also the character of the resonance in Au rods can be tuned. Moreover, the aspect ratio alone is not sufficient to predict the character of the spectrum; the absolute size matters

    GW self-energy calculations for systems with huge supercells

    No full text
    We present parameter-free calculations of the quasiparticle band structure of systems described by huge supercells. They are based on a pseudopotential–plane-wave method to calculate the electronic structure in the ground state. All-electron wave functions are constructed using the projector-augmented wave method. The electronic self-energy is calculated within the GW approximation using an efficient approach to the screening. It includes a simplified treatment of dynamical and local-field effects. The approach is carefully tested by computing the quasiparticle band structure of group-IV semiconductors within nonprimitive unit cells containing 216 atoms. The success of the method is demonstrated by the calculation of the electronic structure of Ge and Si nanocrystallites embedded in a SiC matrix
    corecore