242 research outputs found
Formation of carbohydrate-functionalised polystyrene and glass slides and their analysis by MALDI-TOF MS
Glycans functionalised with hydrophobic trityl groups were synthesised and adsorbed onto polystyrene and glass slides in an array format. The adsorbed glycans could be analysed directly on these minimally conducting surfaces by MALDI-TOF mass spectrometry analysis after aluminium tape was attached to the underside of the slides. Furthermore, the trityl group appeared to act as an internal matrix and no additional matrix was necessary for the MS analysis. Thus, trityl groups can be used as simple hydrophobic, noncovalently linked anchors for ligands on surfaces and at the same time facilitate the in situ mass spectrometric analysis of such ligands
Erythropoietin as candidate for supportive treatment of severe COVID-19
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly
Addressing the 'hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues
Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ā220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reachesā>ā2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Main body of the abstract Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. Short conclusion Substitution of EPO may among other beneficial EPO effects in severe COVID-19 circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted
Core collapse supernovae in the QCD phase diagram
We compare two classes of hybrid equations of state with a hadron-to-quark
matter phase transition in their application to core collapse supernova
simulations. The first one uses the quark bag model and describes the
transition to three-flavor quark matter at low critical densities. The second
one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with
parameters describing a phase transition to two-flavor quark matter at higher
critical densities. These models possess a distinctly different temperature
dependence of their transition densities which turns out to be crucial for the
possible appearance of quark matter in supernova cores. During the early post
bounce accretion phase quark matter is found only if the phase transition takes
place at sufficiently low densities as in the study based on the bag model. The
increase critical density with increasing temperature, as obtained for our PNJL
parametrization, prevents the formation of quark matter. The further evolution
of the core collapse supernova as obtained applying the quark bag model leads
to a structural reconfiguration of the central proto-neutron star where, in
addition to a massive pure quark matter core, a strong hydrodynamic shock wave
forms and a second neutrino burst is released during the shock propagation
across the neutrinospheres. We discuss the severe constraints in the freedom of
choice of quark matter models and their parametrization due to the recently
observed 2 solar mass pulsar and their implications for further studies of core
collapse supernovae in the QCD phase diagram.Comment: 19 pages, 4 figures, CPOD2010 conference proceedin
Acquired Epidermodysplasia Verruciformis Due to Multiple and Unusual HPV Infection Among Vertically-Infected, HIV-Positive Adolescents in Zimbabwe
We have characterized the EV-like dermatosis of acquired HIV in 4 adolescents. Multiple HPV types were isolated in skin tissue samples, including Ī²-HPV, but also high levels of HPV 1 and 2. ARV did not improve the EV eruption
AKT1 Loss Correlates with Episomal HPV16 in Vulval Intraepithelial Neoplasia
Anogenital malignancy has a significant association with high-risk mucosal alpha-human papillomaviruses (alpha-PV), particularly HPV 16 and 18 whereas extragenital SCC has been linked to the presence of cutaneous beta and gammaāHPV types. Vulval skin may be colonised by both mucosal and cutaneous (beta-, mu-, nu- and gamma-) PV types, but there are few systematic studies investigating their presence and their relative contributions to vulval malignancy. Dysregulation of AKT, a serine/threonine kinase, plays a significant role in several cancers. Mucosal HPV types can increase AKT phosphorylation and activity whereas cutaneous HPV types down-regulate AKT1 expression, probably to weaken the cornified envelope to promote viral release. We assessed the presence of mucosal and cutaneous HPV in vulval malignancy and its relationship to AKT1 expression in order to establish the corresponding HPV and AKT1 profile of normal vulval skin, vulval intraepithelial neoplasia (VIN) and vulval squamous cell carcinoma (vSCC). We show that HPV16 is the principle HPV type present in VIN, there were few detectable beta types present and AKT1 loss was not associated with the presence of these cutaneous HPV. We show that HPV16 early gene expression reduced AKT1 expression in transgenic mouse epidermis. AKT1 loss in our VIN cohort correlated with presence of high copy number, episomal HPV16. Maintained AKT1 expression correlated with low copy number, an increased frequency of integration and increased HPV16E7 expression, a finding we replicated in another untyped cohort of vSCC. Since expression of E7 reflects tumour progression, these findings suggest that AKT1 loss associated with episomal HPV16 may have positive prognostic implications in vulval malignancy
E6 and E7 from Beta Hpv38 Cooperate with Ultraviolet Light in the Development of Actinic Keratosis-Like Lesions and Squamous Cell Carcinoma in Mice
Cutaneous beta human papillomavirus (HPV) types appear to be involved in the development of non-melanoma skin cancer (NMSC); however, it is not entirely clear whether they play a direct role. We have previously shown that E6 and E7 oncoproteins from the beta HPV type 38 display transforming activities in several experimental models. To evaluate the possible contribution of HPV38 in a proliferative tissue compartment during carcinogenesis, we generated a new transgenic mouse model (Tg) where HPV38 E6 and E7 are expressed in the undifferentiated basal layer of epithelia under the control of the Keratin 14 (K14) promoter. Viral oncogene expression led to increased cellular proliferation in the epidermis of the Tg animals in comparison to the wild-type littermates. Although no spontaneous formation of tumours was observed during the lifespan of the K14 HPV38 E6/E7-Tg mice, they were highly susceptible to 7,12-dimethylbenz(a)anthracene (DMBA)/12-0-tetradecanoylphorbol-13-acetate (TPA) two-stage chemical carcinogenesis. In addition, when animals were exposed to ultraviolet light (UV) irradiation, we observed that accumulation of p21WAF1 and cell-cycle arrest were significantly alleviated in the skin of Tg mice as compared to wild-type controls. Most importantly, chronic UV irradiation of Tg mice induced the development of actinic keratosis-like lesions, which are considered in humans as precursors of squamous cell carcinomas (SCC), and subsequently of SCC in a significant proportion of the animals. In contrast, wild-type animals subjected to identical treatments did not develop any type of skin lesions. Thus, the oncoproteins E6 and E7 from beta HPV38 significantly contribute to SCC development in the skin rendering keratinocytes more susceptible to UV-induced carcinogenesis
Saccadic latency in hepatic encephalopathy: a pilot study
Hepatic encephalopathy is a common complication of cirrhosis. The degree of neuro-psychiatric impairment is highly variable and its clinical staging subjective. We investigated whether eye movement response timesāsaccadic latenciesācould serve as an indicator of encephalopathy. We studied the association between saccadic latency, liver function and paper- and pencil tests in 70 patients with cirrhosis and 31 patients after liver transplantation. The tests included the porto-systemic encephalopathy (PSE-) test, critical flicker frequency, MELD score and ammonia concentration. A normal range for saccades was established in 31 control subjects. Clinical and biochemical parameters of liver, blood, and kidney function were also determined. Median saccadic latencies were significantly longer in patients with liver cirrhosis when compared to patients after liver transplantation (244Ā ms vs. 278Ā ms pā<ā0.001). Both patient groups had prolonged saccadic latency when compared to an age matched control group (175Ā ms). The reciprocal of median saccadic latency (Ī¼) correlated with PSE tests, MELD score and critical flicker frequency. A significant correlation between the saccadic latency parameter early slope (ĻE) that represents the prevalence of early saccades and partial pressure of ammonia was also noted. Psychometric test performance, but not saccadic latency, correlated with blood urea and sodium concentrations. Saccadic latency represents an objective and quantitative parameter of hepatic encephalopathy. Unlike psychometric test performance, these ocular responses were unaffected by renal function and can be obtained clinically within a matter of minutes by non-trained personnel
- ā¦