416 research outputs found

    Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry

    Full text link
    With the discovery of massive neutron stars such as PSR J1614-2230, the question has arisen whether exotic matter such as hyperons can exist in the neutron star core. We examine the conditions under which hyperons can exist in massive neutron stars. We consistently investigate the vector meson-hyperon coupling, going from SU(6) quark model to a broader SU(3) symmetry. We propose that the maximum neutron star mass decreases linearly with the strangeness content f_s of the neutron star core as M_max(f_s) = M_max(0) - 0.6 M_solar (f_s/0.1), which seems to be independent of the underlying nuclear equation of state and the vector baryon-meson coupling scheme. Thus, pulsar mass measurements can be used to constrain the hyperon fraction in neutron stars.Comment: 13 pages, 10 figure

    Max-Planck-Institute for Psycholinguistics: Annual Report Nr.10 1989

    No full text

    Formation of carbohydrate-functionalised polystyrene and glass slides and their analysis by MALDI-TOF MS

    Get PDF
    Glycans functionalised with hydrophobic trityl groups were synthesised and adsorbed onto polystyrene and glass slides in an array format. The adsorbed glycans could be analysed directly on these minimally conducting surfaces by MALDI-TOF mass spectrometry analysis after aluminium tape was attached to the underside of the slides. Furthermore, the trityl group appeared to act as an internal matrix and no additional matrix was necessary for the MS analysis. Thus, trityl groups can be used as simple hydrophobic, noncovalently linked anchors for ligands on surfaces and at the same time facilitate the in situ mass spectrometric analysis of such ligands

    Solving relativistic hydrodynamic equation in presence of magnetic field for phase transition in a neutron star

    Full text link
    Hadronic to quark matter phase transition may occur inside neutron stars (NS) having central densities of the order of 3-10 times normal nuclear matter saturation density (n0n_0). The transition is expected to be a two-step process; transition from hadronic to 2-flavour matter and two-flavour to β\beta equilibrated charge neutral three-flavour matter. In this paper we concentrate on the first step process and solve the relativistic hydrodynamic equations for the conversion front in presence of high magnetic field. Lorentz force due to magnetic field is included in the energy momentum tensor by averaging over the polar angles. We find that for an initial dipole configuration of the magnetic field with a sufficiently high value at the surface, velocity of the front increases considerably.Comment: 16 pages, 4 figures, same as published version of JPG, J. Phys. G: Nucl. Part. Phys. 39 (2012) 09520

    Cortical networks are disturbed in people with cirrhosis even in the absence of neuropsychometric impairment

    Get PDF
    OBJECTIVE: Hepatic encephalopathy is a common complication of cirrhosis; it is characterised by neuropsychometric/neurophysiological abnormalities. Its pathophysiology is complex but glial neuronal communication is likely to be disrupted and to impact on oscillatory networks and cortical connectivity. The aim of this study was to use multichannel electroencephalography (EEG) to investigate functional connectivity, as a surrogate for cortical networks, in patients with cirrhosis. METHODS: Resting EEGs were recorded in 98 healthy controls and in 264 patients with cirrhosis characterised psychometrically using the Psychometric Hepatic Encephalopathy Score (PHES). Functional connectivity was calculated using the phase-lag index with stratification into standard EEG frequency bands. The findings were validated in a further cohort of 39 healthy controls and 106 patients with cirrhosis. RESULTS: Widespread disruption in functional connectivity was observed in the patients compared with the controls; connectivity was increased in the theta (4-8 Hz) band and decreased in the delta (1-3.5 Hz), alpha (8.5-13 Hz) and beta (13.5-26.5 Hz) bands. Changes were apparent even in patients who were psychometrically unimpaired compared with healthy controls viz mean ± SEM theta 0.107 ± 0.001 vs. 0.103 ± 0.002 (p < 0.05) and alpha 0.139 ± 0.003 vs. 0.154 ± 0.003 (p < 0.01); more pronounced changes were observed with increasing neuropsychometric impairment. The findings were replicated in the second cohort. CONCLUSIONS: Cortical networks are disturbed in patients with cirrhosis even in the absence of psychometric impairment. SIGNIFICANCE: These findings will facilitate further exploration of the pathophysiology of this condition and provide a robust means for assessing treatment effects in research settings

    Addressing the ‘hypoxia paradox’ in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues

    Get PDF
    Background: Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called ‘long COVID’ and ‘neuroCOVID’, becomes increasingly evident. Main body of the abstract: Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term ‘hypoxia paradox’. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this ‘hypoxia paradox’ caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. Short conclusion: Substitution of EPO may—among other beneficial EPO effects in severe COVID-19—circumvent downstream consequences of the ‘hypoxia paradox’. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warrante

    Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase

    Get PDF
    We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star. The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates towards the protoneutron star surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the protoneutron star where the vp-process might occur.Comment: 29 pages, 24 figures, submitted to Ap

    Autoantibodies against NMDAR subunit NR1 disappear from blood upon anesthesia

    Get PDF
    Anesthetics penetrate the blood-brain-barrier (BBB) and - as confirmed preclinically – transiently disrupt it. An analogous consequence in humans has remained unproven. In mice, we previously reported that upon BBB dysfunction, the brain acts as ‘immunoprecipitator’ of autoantibodies against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB). We thus hypothesized that during human anesthesia, pre-existing NMDAR1-AB will specifically bind to brain. Screening of N = 270 subjects undergoing general anesthesia during cardiac surgery for serum NMDAR1-AB revealed N = 25 NMDAR1-AB seropositives. Only N = 14 remained positive post-surgery. No changes in albumin, thyroglobulin or CRP were associated with reduction of serum NMDAR1-AB. Thus, upon anesthesia, BBB opening likely occurs also in humans

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35&#xb0;C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.&#xd;&#xa;Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1&#xb5;m.&#xd;&#xa;The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.&#xd;&#xa;Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0&#xb0;C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
    • …
    corecore