259 research outputs found

    Automatic noninvasive measurement of systolic blood pressure using photoplethysmography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Automatic measurement of arterial blood pressure is important, but the available commercial automatic blood pressure meters, mostly based on oscillometry, are of low accuracy.</p> <p>Methods</p> <p>In this study, we present a cuff-based technique for automatic measurement of systolic blood pressure, based on photoplethysmographic signals measured simultaneously in fingers of both hands. After inflating the pressure cuff to a level above systolic blood pressure in a relatively slow rate, it is slowly deflated. The cuff pressure for which the photoplethysmographic signal reappeared during the deflation of the pressure-cuff was taken as the systolic blood pressure. The algorithm for the detection of the photoplethysmographic signal involves: (1) determination of the time-segments in which the photoplethysmographic signal distal to the cuff is expected to appear, utilizing the photoplethysmographic signal in the free hand, and (2) discrimination between random fluctuations and photoplethysmographic pattern. The detected pulses in the time-segments were identified as photoplethysmographic pulses if they met two criteria, based on the pulse waveform and on the correlation between the signal in each segment and the signal in the two neighboring segments.</p> <p>Results</p> <p>Comparison of the photoplethysmographic-based automatic technique to sphygmomanometry, the reference standard, shows that the standard deviation of their differences was 3.7 mmHg. For subjects with systolic blood pressure above 130 mmHg the standard deviation was even lower, 2.9 mmHg. These values are much lower than the 8 mmHg value imposed by AAMI standard for automatic blood pressure meters.</p> <p>Conclusion</p> <p>The photoplethysmographic-based technique for automatic measurement of systolic blood pressure, and the algorithm which was presented in this study, seems to be accurate.</p

    Characterizing the Quantum Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology

    Get PDF
    We optimized the performance of quantum confined Stark effect QCSE based voltage nanosensors. A high throughput approach for single particle QCSE characterization was developed and utilized to screen a library of such nanosensors. Type II ZnSe CdS seeded nanorods were found to have the best performance among the different nanosensors evaluated in this work. The degree of correlation between intensity changes and spectral changes of the excitons emission under applied field was characterized. An upper limit for the temporal response of individual ZnSe CdS nanorods to voltage modulation was characterized by high throughput, high temporal resolution intensity measurements using a novel photon counting camera. The measured 3.5 us response time is limited by the voltage modulation electronics and represents about 30 times higher bandwidth than needed for recording an action potential in a neuron.Comment: 36 pages, 6 figure

    Observation of Spin-Orbit Berry's Phase in Magnetoresistance of a Two-Dimensional Hole Anti-dot System

    Full text link
    We report observation of spin-orbit Berry's phase in the Aharonov-Bohm (AB) type oscillation of weak field magnetoresistance in an anti-dot lattice (ADL) of a two-dimensional hole system. An AB-type oscillation is superposed on the commensurability peak, and the main peak in the Fourier transform is clearly split up due to variation in Berry's phase originating from the spin-orbit interaction. A simulation considering Berry's phase and the phase arising from the spin-orbit shift in the momentum space shows qualitative agreement with the experiment.Comment: 13 pages, 5 figure

    Determinants of the voltage dependence of G protein modulation within calcium channel β subunits

    Get PDF
    CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone

    Telomere Shortening Sensitizes Cancer Cells to Selected Cytotoxic Agents: In Vitro and In Vivo Studies and Putative Mechanisms

    Get PDF
    or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner. mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening.To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer

    Nonequilibrium transport in quantum impurity models: Exact path integral simulations

    Full text link
    We simulate the nonequilibrium dynamics of two generic many-body quantum impurity models by employing the recently developed iterative influence-functional path integral method [Phys. Rev. B {\bf 82}, 205323 (2010)]. This general approach is presented here in the context of quantum transport in molecular electronic junctions. Models of particular interest include the single impurity Anderson model and the related spinless two-state Anderson dot. In both cases we study the time evolution of the dot occupation and the current characteristics at finite temperature. A comparison to mean-field results is presented, when applicable

    Resonant tunneling through ultrasmall quantum dots: zero-bias anomalies, magnetic field dependence, and boson-assisted transport

    Full text link
    We study resonant tunneling through a single-level quantum dot in the presence of strong Coulomb repulsion beyond the perturbative regime. The level is either spin-degenerate or can be split by a magnetic field. We, furthermore, discuss the influence of a bosonic environment. Using a real-time diagrammatic formulation we calculate transition rates, the spectral density and the nonlinear I−VI-V characteristic. The spectral density shows a multiplet of Kondo peaks split by the transport voltage and the boson frequencies, and shifted by the magnetic field. This leads to zero-bias anomalies in the differential conductance, which agree well with recent experimental results for the electron transport through single-charge traps. Furthermore, we predict that the sign of the zero-bias anomaly depends on the level position relative to the Fermi level of the leads.Comment: 27 pages, latex, 21 figures, submitted to Phys. Rev.

    Short-range surface plasmonics: localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface

    Get PDF
    We experimentally and theoretically visualize the propagation of short-range surface plasmon polaritons using atomically flat single-crystalline gold platelets on silicon substrates. We study their excitation and subfemtosecond dynamics via normal-incidence two-photon photoemission electron microscopy. By milling a plasmonic disk and grating structure into a single-crystalline gold platelet, we observe nanofocusing of the short-range surface plasmon polariton. Localized two-photon ultrafast electron emission from a spot with a smallest dimension of 60 nm is observed. Our novel approach opens the door toward reproducible plasmonic nanofocusing devices, which do not degrade upon high light intensity or heating due to the atomically flat surface without any tips, protrusions, or holes. Our nanofoci could also be used as local emitters for ultrafast electron bunches in time-resolved electron microscopes
    • …
    corecore