951 research outputs found

    Erbium dopants in silicon nanophotonic waveguides

    Get PDF
    The combination of established nanofabrication with attractive material properties makes silicon a promising material for quantum technologies, where implanted dopants serve as qubits with high density and excellent coherence even at elevated temperatures. In order to connect and control these qubits, interfacing them with light in nanophotonic waveguides offers unique promise. Here, we present resonant spectroscopy of implanted erbium dopants in such waveguides. We overcome the requirement of high doping and above-bandgap excitation that limited earlier studies. We thus observe erbium incorporation at well-defined lattice sites with a thousandfold reduced inhomogeneous broadening of about 1 GHz and a spectral diffusion linewidth down to 45 MHz. Our study thus introduces a novel materials platform for the implementation of on-chip quantum memories, microwave-to-optical conversion, and distributed quantum information processing, with the unique feature of operation in the main wavelength band of fiber-optic communication.Comment: 7 pages, 4 figure

    Narrow optical transitions in erbium-implanted silicon waveguides

    Get PDF
    The realization of a scalable architecture for quantum information processing is a major challenge for quantum science. A promising approach is based on emitters in nanostructures that are coupled by light. Here, we show that erbium dopants can be reproducibly integrated at well-defined lattice sites by implantation into pure silicon. We thus achieve a narrow inhomogeneous broadening, less than 1 GHz, strong optical transitions, and an outstanding optical coherence even at temperatures of 8 K, with an upper bound to the homogeneous linewidth of around 10 kHz. Our study thus introduces a promising materials platform for the implementation of on-chip quantum memories, microwave-to-optical conversion, and distributed quantum information processing

    Chaos in a low-order model of magnetoconvection

    Get PDF
    In the limit of tall, thin rolls, weakly nonlinear convection in a vertical magnetic field is described by an asymptotically exact third-order set of ordinary differential equations. These equations are shown here to have three codimension-two bifurcation points: a Takens-Bogdanov bifurcation, at which a gluing bifurcation is created; a point at which the gluing bifurcation is replaced by a pair of homoclinic explosions between which there are Lorenz-like chaotic trajectories; and a new type of bifurcation point at which the first of a cascade of period-doubling bifurcation lines originates. The last two bifurcation points are analysed in terms of a one-dimensional map. The equations also have a T-point, at which there is a heteroclinic connection between a saddle and a pair of saddle-foci; emerging from this point is a line of Shil'nikov bifurcations, involving homoclinic connections to a saddle-focus

    Fluctuation Properties of Steady-State Langevin Systems

    Full text link
    Motivated by stochastic models of climate phenomena, the steady-state of a linear stochastic model with additive Gaussian white noise is studied. Fluctuation theorems for nonequilibrium steady-states provide a constraint on the character of these fluctuations. The properties of the fluctuations which are unconstrained by the fluctuation theorem are investigated and related to the model parameters. The irreversibility of trajectory segments, which satisfies a fluctuation theorem, is used as a measure of nonequilibrium fluctuations. The moments of the irreversibility probability density function (pdf) are found and the pdf is seen to be non-Gaussian. The average irreversibility goes to zero for short and long trajectory segments and has a maximum for some finite segment length, which defines a characteristic timescale of the fluctuations. The initial average irreversibility growth rate is equal to the average entropy production and is related to noise-amplification. For systems with a separation of deterministic timescales, modes with timescales much shorter than the trajectory timespan and whose noise amplitudes are not asymptotically large, do not, to first order, contribute to the irreversibility statistics, providing a potential basis for dimensional reduction.Comment: 8 pages, to be published in Physical Review

    Laplace Invariants for General Hyperbolic Systems

    Full text link
    We consider the generalization of Laplace invariants to linear differential systems of arbitrary rank and dimension. We discuss completeness of certain subsets of invariants

    How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    Get PDF
    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells

    New optical and near-infrared Surface Brightness Fluctuations models. A primary distance indicator ranging from Globular Clusters to distant galaxies?

    Get PDF
    We present new theoretical models for Surface Brightness Fluctuations (SBF) both for optical and near-infrared bands in standard ground-based and Hubble Space Telescope filter systems. Simple Stellar Population simulations are adopted. Models cover the age and metallicity ranges from t=5t=5 to 15 Gyr15~Gyr and from Z=0.0001Z=0.0001 to 0.04 respectively. Effects due to the variation of the Initial Mass Function and the stellar color-temperature relations are explored. Particular attention is devoted to very bright stars in the color-magnitude diagram and to investigate the effects of mass loss along the Red Giant Branch (RGB) and the Asymptotic Giant Branch (AGB). It is found that UU and BB bands SBF amplitudes are powerful diagnostics for the morphology of the Horizontal Branch and the Post-AGB stars population. We point out that a careful treatment of mass loss process along the RGB and AGB is fundamental in determining reliable SBF evaluations. The SBF measurements are used to give robust constraints on the evolution of AGB stars, suggesting that mass loss activity on AGB stars should be twice more efficient than on the RGB stars. Our models are able to reproduce the absolute SBF magnitudes of the Galactic Globular Clusters and of galaxies, and their integrated colors. New calibrations of absolute SBF magnitude in VV, RR, II, and KK photometric filters are provided, which appear reliable enough to directly gauge distances bypassing other distance indicators. The SBF technique is also used as stellar population tracer to derive age and metallicity of a selected sample of galaxies of known distances. Finally, {\it SBF color} versus {\it integrated color} diagrams are proposed as particularly useful in removing the well known {\it age-metallicity degeneracy} affecting our knowledge of remote stellar systems.Comment: AJ accepted, 46 pages, 21 figures, 10 tables, uses aastex.cl

    The Functional Trajectory in Frail Compared With Non-frail Critically Ill Patients During the Hospital Stay

    Get PDF
    Background: Long-term outcome is determined not only by the acute critical illness but increasingly by the reduced functional reserve of pre-existing frailty. The patients with frailty currently account for one-third of the critically ill, resulting in higher mortality. There is evidence of how frailty affects the intrahospital functional trajectory of critically ill patients since prehospital status is often missing. Methods: In this prospective single-center cohort study at two interdisciplinary intensive care units (ICUs) at a university hospital in Germany, the frailty was assessed using the Clinical Frailty Scale (CFS) in the adult patients with critical illness with an ICU stay >24 h. The functional status was assessed using the sum of the subdomains "Mobility" and "Transfer" of the Barthel Index (MTB) at three time points (pre-hospital, ICU discharge, and hospital discharge). Results: We included 1,172 patients with a median age of 75 years, of which 290 patients (25%) were frail. In a propensity score-matched cohort, the probability of MTB deterioration till hospital discharge did not differ in the patients with frailty (odds ratio (OR) 1.3 [95% CI 0.8-1.9], p = 0.301), confirmed in several sensitivity analyses in all the patients and survivors only. Conclusion: The patients with frailty have a reduced functional status. Their intrahospital functional trajectory, however, was not worse than those in non-frail patients, suggesting a rehabilitation potential of function in critically ill patients with frailty
    corecore