430 research outputs found

    Man Made Hurricane

    Get PDF

    Rambling Through Robinson

    Get PDF
    An Account of the Home of the Department of Mechanical Engineerin

    Weld microfissuring in Inconel 718 minimized by minor elements

    Get PDF
    Manganese, silicon, and magnesium markedly reduce the tendency of Inconel 718 to weld microfissuring. By combining a manganese, 0.20 percent by content, with silicon, greater than 0.25 percent content, or by adding 20 ppm of magnesium, the weld microfissuring decreased in the standard alloy

    Endemic Acinetobacter baumannii in a New York Hospital

    Get PDF
    Acinetobacter baumannii is an increasingly multidrug-resistant (MDR) cause of hospital-acquired infections, often associated with limited therapeutic options. We investigated A. baumannii isolates at a New York hospital to characterize genetic relatedness.Thirty A. baumannii isolates from geographically-dispersed nursing units within the hospital were studied. Isolate relatedness was assessed by repetitive sequence polymerase chain reaction (rep-PCR). The presence and characteristics of integrons were assessed by PCR. Metabolomic profiles of a subset of a prevalent strain isolates and sporadic isolates were characterized and compared.We detected a hospital-wide group of closely related carbapenem resistant MDR A. baumannii isolates. Compared with sporadic isolates, the prevalent strain isolates were more likely to be MDR (p = 0.001). Isolates from the prevalent strain carried a novel Class I integron sequence. Metabolomic profiles of selected prevalent strain isolates and sporadic isolates were similar.The A. baumannii population at our hospital represents a prevalent strain of related MDR isolates that contain a novel integron cassette. Prevalent strain and sporadic isolates did not segregate by metabolomic profiles. Further study of environmental, host, and bacterial factors associated with the persistence of prevalent endemic A. baumannii strains is needed to develop effective prevention strategies

    Psychometric Properties of an Arabic Pain Anxiety Symptoms Scale-20 (PASS-20) in Healthy Volunteers and Patients Attending a Physiotherapy Clinic.

    Get PDF
    PURPOSE: The aim of this study was to cross-culturally adapt the PASS-20 questionnaire for use in Libya. METHODS: Participants were 71 patients (42 women) attending the physiotherapy clinic, Ibn Sina Hospital, Sirt, Libya for management of persistent pain and 137 healthy unpaid undergraduate students (52 women) from the University of Sirt, Libya. The English PASS-20 was translated into Arabic. Patients completed the Arabic PASS-20 and the Arabic Pain Rating Scales on two occasions separated by a 14-day interval. Healthy participants completed the Arabic PASS-20 on one occasion. RESULTS: The internal consistency (ICC) for pain patient and healthy participant samples yielded a good reliability for the total score, cognitive anxiety, fear of pain, and physiological anxiety. The test-retest reliability of the Arabic PASS-20 score showed high reliability for the total score (ICC = 0.93, p < 0.001), escape/avoidance (ICC = 0.93, p < 0.001), fear of pain (ICC = 0.94, p < 0.001), and physiological anxiety subscales (ICC = 0.96, p < 0.001) and good reliability for the cognitive anxiety (ICC = 0.85, p < 0.001). Inspection of the Promax rotation showed that each factor comprised of five items were consistent with the theoretical constructs of the original PASS-20 subscales. CONCLUSION: The Arabic PASS-20 retained internal consistency and reliability with the original English version and can be used to measure pain anxiety symptoms in both pain and healthy individual samples in Libya

    Hemocompatibility of Silicon-Based Substrates for Biomedical Implant Applications

    Get PDF
    Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems

    Tubulin isoform composition tunes microtubule dynamics

    Get PDF
    Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue. This preparation is not representative of tubulin found in many cell types. Here we report the 4.2Å cryo-EM structure and in vitro dynamics parameters of α1B/βI+βIVb microtubules assembled from tubulin purified from a human embryonic kidney cell line with isoform composition characteristic of fibroblasts and many immortalized cell lines. We find that these microtubules grow faster and transition to depolymerization less frequently compared to brain microtubules. Cryo-EM reveals that the dynamic ends of α1B/βI+βIVb microtubules are less tapered and that these tubulin heterodimers display lower curvatures. Interestingly, analysis of EB1 distributions at dynamic ends suggests no differences in GTP cap sizes. Lastly, we show that the addition of recombinant α1A/βIII tubulin, a neuronal isotype overexpressed in many tumors, proportionally tunes the dynamics of α1B/βI+βIVb microtubules. Our study is an important step towards understanding how tubulin isoform composition tunes microtubule dynamics
    corecore