383 research outputs found

    Local well-posedness and blow up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations

    Get PDF
    We consider a family of dispersion generalized Benjamin-Ono equations (dgBO) which are critical with respect to the L2 norm and interpolate between the critical modified (BO) equation and the critical generalized Korteweg-de Vries equation (gKdV). First, we prove local well-posedness in the energy space for these equations, extending results by Kenig, Ponce and Vega concerning the (gKdV) equations. Second, we address the blow up problem in the spirit of works of Martel and Merle on the critical (gKdV) equation, by studying rigidity properties of the (dgBO) flow in a neighborhood of solitons. We prove that when the model is close to critical (gKdV), solutions of negative energy close to solitons blow up in finite or infinite time in the energy space. The blow up proof requires in particular extensions to (dgBO) of monotonicity results for localized versions of L2 norms by pseudo-differential operator tools.Comment: Submitte

    I=3/2 KπK \pi Scattering in the Nonrelativisitic Quark Potential Model

    Full text link
    We study I=3/2I=3/2 elastic KπK\pi scattering to Born order using nonrelativistic quark wavefunctions in a constituent-exchange model. This channel is ideal for the study of nonresonant meson-meson scattering amplitudes since s-channel resonances do not contribute significantly. Standard quark model parameters yield good agreement with the measured S- and P-wave phase shifts and with PCAC calculations of the scattering length. The P-wave phase shift is especially interesting because it is nonzero solely due to SU(3)fSU(3)_f symmetry breaking effects, and is found to be in good agreement with experiment given conventional values for the strange and nonstrange constituent quark masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210

    Stable self-similar blow-up dynamics for slightly L2L^2-supercritical generalized KdV equations

    Get PDF
    In this paper we consider the slightly L2L^2-supercritical gKdV equations tu+(uxx+uup1)x=0\partial_t u+(u_{xx}+u|u|^{p-1})_x=0, with the nonlinearity 5<p<5+ε5<p<5+\varepsilon and 0<ε10<\varepsilon\ll 1 . We will prove the existence and stability of a blow-up dynamic with self-similar blow-up rate in the energy space H1H^1 and give a specific description of the formation of the singularity near the blow-up time.Comment: 38 page

    Kaon-Nucleon Scattering Amplitudes and Z^*-Enhancements from Quark Born Diagrams

    Get PDF
    We derive closed form kaon-nucleon scattering amplitudes using the ``quark Born diagram" formalism, which describes the scattering as a single interaction (here the OGE spin-spin term) followed by quark line rearrangement. The low energy I=0 and I=1 S-wave KN phase shifts are in reasonably good agreement with experiment given conventional quark model parameters. For klab>0.7k_{lab}> 0.7 Gev however the I=1 elastic phase shift is larger than predicted by Gaussian wavefunctions, and we suggest possible reasons for this discrepancy. Equivalent low energy KN potentials for S-wave scattering are also derived. Finally we consider OGE forces in the related channels KΔ\Delta, K^*N and KΔ^*\Delta, and determine which have attractive interactions and might therefore exhibit strong threshold enhancements or ``Z^*-molecule" meson-baryon bound states. We find that the minimum-spin, minimum-isospin channels and two additional KΔ^*\Delta channels are most conducive to the formation of bound states. Related interesting topics for future experimental and theoretical studies of KN interactions are also discussed.Comment: 34 pages, figures available from the authors, revte

    A sharp condition for scattering of the radial 3d cubic nonlinear Schroedinger equation

    Full text link
    We consider the problem of identifying sharp criteria under which radial H1H^1 (finite energy) solutions to the focusing 3d cubic nonlinear Schr\"odinger equation (NLS) itu+Δu+u2u=0i\partial_t u + \Delta u + |u|^2u=0 scatter, i.e. approach the solution to a linear Schr\"odinger equation as t±t\to \pm \infty. The criteria is expressed in terms of the scale-invariant quantities u0L2u0L2\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} and M[u]E[u]M[u]E[u], where u0u_0 denotes the initial data, and M[u]M[u] and E[u]E[u] denote the (conserved in time) mass and energy of the corresponding solution u(t)u(t). The focusing NLS possesses a soliton solution eitQ(x)e^{it}Q(x), where QQ is the ground-state solution to a nonlinear elliptic equation, and we prove that if M[u]E[u]<M[Q]E[Q]M[u]E[u]<M[Q]E[Q] and u0L2u0L2<QL2QL2\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} < \|Q\|_{L^2}\|\nabla Q\|_{L^2}, then the solution u(t)u(t) is globally well-posed and scatters. This condition is sharp in the sense that the soliton solution eitQ(x)e^{it}Q(x), for which equality in these conditions is obtained, is global but does not scatter. We further show that if M[u]E[u]QL2QL2M[u]E[u] \|Q\|_{L^2}\|\nabla Q\|_{L^2}, then the solution blows-up in finite time. The technique employed is parallel to that employed by Kenig-Merle \cite{KM06a} in their study of the energy-critical NLS

    Uniqueness and Nondegeneracy of Ground States for (Δ)sQ+QQα+1=0(-\Delta)^s Q + Q - Q^{\alpha+1} = 0 in R\mathbb{R}

    Full text link
    We prove uniqueness of ground state solutions Q=Q(x)0Q = Q(|x|) \geq 0 for the nonlinear equation (Δ)sQ+QQα+1=0(-\Delta)^s Q + Q - Q^{\alpha+1}= 0 in R\mathbb{R}, where 0<s<10 < s < 1 and 0<α<4s12s0 < \alpha < \frac{4s}{1-2s} for s<1/2s < 1/2 and 0<α<0 < \alpha < \infty for s1/2s \geq 1/2. Here (Δ)s(-\Delta)^s denotes the fractional Laplacian in one dimension. In particular, we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=1/2s=1/2 and α=1\alpha=1 in [Acta Math., \textbf{167} (1991), 107--126]. As a technical key result in this paper, we show that the associated linearized operator L+=(Δ)s+1(α+1)QαL_+ = (-\Delta)^s + 1 - (\alpha+1) Q^\alpha is nondegenerate; i.\,e., its kernel satisfies kerL+=span{Q}\mathrm{ker}\, L_+ = \mathrm{span}\, \{Q'\}. This result about L+L_+ proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for nonlinear dispersive PDEs with fractional Laplacians, such as the generalized Benjamin-Ono (BO) and Benjamin-Bona-Mahony (BBM) water wave equations.Comment: 45 page

    Nondispersive solutions to the L2-critical half-wave equation

    Get PDF
    We consider the focusing L2L^2-critical half-wave equation in one space dimension itu=Duu2u, i \partial_t u = D u - |u|^2 u, where DD denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold M>0M_* > 0 such that all H1/2H^{1/2} solutions with uL2<M\| u \|_{L^2} < M_* extend globally in time, while solutions with uL2M\| u \|_{L^2} \geq M_* may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass u0L2=M\| u_0 \|_{L^2} = M_*. More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E0>0E_0 >0 and the linear momentum P0RP_0 \in \R. In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L2L^2-critical nonlinear PDE with nonlocal dispersion.Comment: 51 page

    Using Nonlinear Response to Estimate the Strength of an Elastic Network

    Full text link
    Disordered networks of fragile elastic elements have been proposed as a model of inner porous regions of large bones [Gunaratne et.al., cond-mat/0009221, http://xyz.lanl.gov]. It is shown that the ratio Γ\Gamma of responses of such a network to static and periodic strain can be used to estimate its ultimate (or breaking) stress. Since bone fracture in older adults results from the weakening of porous bone, we discuss the possibility of using Γ\Gamma as a non-invasive diagnostic of osteoporotic bone.Comment: 4 pages, 4 figure

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0
    corecore