research

A sharp condition for scattering of the radial 3d cubic nonlinear Schroedinger equation

Abstract

We consider the problem of identifying sharp criteria under which radial H1H^1 (finite energy) solutions to the focusing 3d cubic nonlinear Schr\"odinger equation (NLS) itu+Δu+u2u=0i\partial_t u + \Delta u + |u|^2u=0 scatter, i.e. approach the solution to a linear Schr\"odinger equation as t±t\to \pm \infty. The criteria is expressed in terms of the scale-invariant quantities u0L2u0L2\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} and M[u]E[u]M[u]E[u], where u0u_0 denotes the initial data, and M[u]M[u] and E[u]E[u] denote the (conserved in time) mass and energy of the corresponding solution u(t)u(t). The focusing NLS possesses a soliton solution eitQ(x)e^{it}Q(x), where QQ is the ground-state solution to a nonlinear elliptic equation, and we prove that if M[u]E[u]<M[Q]E[Q]M[u]E[u]<M[Q]E[Q] and u0L2u0L2<QL2QL2\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} < \|Q\|_{L^2}\|\nabla Q\|_{L^2}, then the solution u(t)u(t) is globally well-posed and scatters. This condition is sharp in the sense that the soliton solution eitQ(x)e^{it}Q(x), for which equality in these conditions is obtained, is global but does not scatter. We further show that if M[u]E[u]QL2QL2M[u]E[u] \|Q\|_{L^2}\|\nabla Q\|_{L^2}, then the solution blows-up in finite time. The technique employed is parallel to that employed by Kenig-Merle \cite{KM06a} in their study of the energy-critical NLS

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020