85 research outputs found

    Isotropic Band Gaps and Freeform Waveguides Observed in Hyperuniform Disordered Photonic Solids

    Full text link
    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the first experimental realization of an isotropic complete photonic band gap (PBG) in a two-dimensional (2D) disordered dielectric structure. This structure is designed by a constrained-optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this novel class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This first experimental verification of a complete PBG and realization of functional defects in this new class of materials demonstrates their potential as building blocks for precise manipulation of photons in planar optical micro-circuits and has implications for disordered acoustic and electronic bandgap materials

    Association between Polymorphism of Interleukin-1beta and Interleukin-1 Receptor Antagonist Gene and Asthma Risk: A Meta-Analysis

    Get PDF
    Background. Asthma is a complex polygenic disease in which gene-environment interactions are important. A number of studies have investigated the polymorphism of IL-1β -511C/T and IL-1RA genes in relation to asthma susceptibility in different populations. However, the results of individual studies have been inconsistent. Accordingly, we conducted a comprehensive meta-analysis to investigate the association between the IL-1β -511C/T and IL-1RA polymorphism and asthma risk. Methods. Data were collected from the following electronic databases: Pub Med, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), ISI Web of Knowledge, and Google Scholar Search databases with the last report up to July 2013. Finally, 15 studies were included in our meta-analysis. We summarized the data on the association between IL-1β -511C/T and IL-1RA polymorphism and risk of asthma in the overall population and performed subgroup analyses by ethnicity, mean of age, and source of controls. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the associations between IL-1β -511C/T and IL-1RA polymorphism and asthma risk. Statistical analysis was performed with Review Manager 5.1. Results. A total of 15 case-control studies were included in the meta-analysis of IL-1β -511C/T (1,385 cases and 1,964 controls) and IL-1RA (2,800 cases and 6,359 controls) genotypes. No association was found between IL-1β -511C/T polymorphism and asthma risk (dominant model: OR=1.11, 95% CI: 0.99–1.25, P=0.07, PHeterogeneity=0.06; recessive model: OR=1.04, 95% CI: 0.91–1.20, P=0.55, PHeterogeneity=0.11). Subgroup analysis based on ethnicity (Asian and Caucasian), source of controls (population-based controls and hospital-based controls), and mean of age (adulthood and childhood) did not present any significant association. The overall results showed that the IL-1RA polymorphism was related to an increased risk of asthma (homozygote model: OR=1.32, 95% CI: 1.12–1.56, P=0.0009, PHeterogeneity=0.87; recessive model: OR=1.39, 95% CI: 1.18–1.63, P=0.0001, PHeterogeneity=0.82). Similar results were found in the subgroup analyses by ethnicity, mean of age, and source of controls. Sensitivity analysis did not perturb the results. Conclusions. This meta-analysis provided strong evidence that the IL-1RA polymorphism was a risk factor of asthma, especially in Caucasian populations. However, no association was found for IL-1β -511C/T genotype carriers. Larger scale studies are needed for confirmation

    Learning Knowledge-Enhanced Contextual Language Representations for Domain Natural Language Understanding

    Full text link
    Knowledge-Enhanced Pre-trained Language Models (KEPLMs) improve the performance of various downstream NLP tasks by injecting knowledge facts from large-scale Knowledge Graphs (KGs). However, existing methods for pre-training KEPLMs with relational triples are difficult to be adapted to close domains due to the lack of sufficient domain graph semantics. In this paper, we propose a Knowledge-enhanced lANGuAge Representation learning framework for various clOsed dOmains (KANGAROO) via capturing the implicit graph structure among the entities. Specifically, since the entity coverage rates of closed-domain KGs can be relatively low and may exhibit the global sparsity phenomenon for knowledge injection, we consider not only the shallow relational representations of triples but also the hyperbolic embeddings of deep hierarchical entity-class structures for effective knowledge fusion.Moreover, as two closed-domain entities under the same entity-class often have locally dense neighbor subgraphs counted by max point biconnected component, we further propose a data augmentation strategy based on contrastive learning over subgraphs to construct hard negative samples of higher quality. It makes the underlying KELPMs better distinguish the semantics of these neighboring entities to further complement the global semantic sparsity. In the experiments, we evaluate KANGAROO over various knowledge-aware and general NLP tasks in both full and few-shot learning settings, outperforming various KEPLM training paradigms performance in closed-domains significantly.Comment: emnlp 202

    Effect of additives on microstructure of coal-based graphite

    Get PDF
    The Taixi anthracite was used as the raw materials, and mixed with different masses of additives, namely silicon oxide, titanium oxide, and iron oxide, to prepare the coal-based graphite by high temperature graphitization. The microstructure of coal-based graphite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal Raman spectroscopy (Raman) and Specific surface area and porosity analyzer.The results show that the graphitization degree of the coal-based graphite can reach over 89% after high temperature heat treatment at 2800 °C , which significantly improves the microcrystalline structure of anthracite and achieves orderly rearrangement of sp2 hybrid carbon atoms in the coal. Under the same additive mixing level, the graphitization degree and stacking height of coal-based graphite with titanium dioxide as additive are relatively high, the difference between the layer spacing and the ideal graphite layer spacing is the smallest, and the degree of ordering of carbon materials is the highest. The Raman spectroscopy results showed that the order degree of coal -based graphite prepared under different additives was significantly different, and the order degree of TXSC3, TXTC2 and TXIC3 coal-based graphite was the highest among the additives. Under the electron microscope, it is found that under the conditions of three additives, the scales, spherical and two shapes of coal-based graphite can be prepared separately. It can be seen from the specific surface area and pore size distribution data of coal-based graphite that they have similar low-temperature nitrogen adsorption-desorption isotherms

    Effect of moisture on anthracite crushing behavior and grinding energy consumption

    Get PDF
    The change of water occurrence form and content in coal will change the physical characteristics and pore structure of coal, and then affect its crushing process.In order to study the effect of moisture contained in coal on on the crushing behavior of coal particles,anthracite coal was used as the research object. A Hastelloy grinding equipped with a power measuring device was applied to simulate the crushing environment in a medium-speed coal mill. The individual and mixed crushing experiments were carried out in multi-time batches of coal samples with different water content. Thus, the effects of water occurrence on coal crushing rate, pulverized coal fineness, and grinding energy consumption were studied. The experimental results showed that compared with the original coal samples, the initial particle size material crushing rate of homogenized soaked coal samples decreases significantly due to the increase of water content, its grindability index first decreased and then increased with increasing the water content when the homogenized immersed coal sample was crushed separately, and the fineness of pulverized coal t10 was positively correlated with water content. When dry and wet coal samples were mixed and crushed, the crushing rate and fine-grained material generation rate of 13.34% moisture content samples were much higher than that of homogenized soaked coal samples with the same moisture content, and their its grindability index was larger than that of the original coal; The grindability index of the blended coal samples with other moisture contents was slightly smaller than that of the homogenized soaked coal samples, and this difference became larger with the increase of moisture content, while the crushing rate and the yield of fine-grained materials differed less from that of the homogenized impregnated coal samples. Also, the result indicated that the classical energy-particle size relationship model may be used to characterize the individual and mixed crushing processes of samples with different moisture gradients. The internal and external moisture reduced the ability of anthracite to resist crushing to varying degrees, and increasing the water content during separate crushing improved the energy efficiency significantly. So, the water content parameters were introduced into the energy consumption model to characterize the crushing process of various moisture coal samples. By exploring the influence mechanism of water content in coal on energy consumption of coal crushing, it reveals the way of energy loss in the process of coal crushing and provides theoretical guidance for optimizing coal crushing process and reducing energy consumption

    Comparison of energy efficiency between E and MPS type vertical spindle pulverizer based on the experimental and industrial sampling tests

    Get PDF
    0.5%–2% gross power generation of coal power plant is consumed by vertical spindle pulverizer (VSP), and it is essential to select a VSP with better operational performance. Simulated studies of lab-scale mills, which show the similar breakage mechanism with VSP, and industrial sampling on VSPs are conducted to compare energy efficiencies of E and MPS type VSPs (with the grinding media of balls and tread rollers, respectively). The classical energy-size reduction model is modified with the addition of particle size in the exponential form to compare the grinding energy efficiency (product fineness for the certain specific energy) of two lab-scale mills. Also, differences in structure and operational parameters of lab-scale mills are considered. For the industrial sampling tests of two VSPs, recorded data and size distribution of sampled materials are preliminarily compared. Product t10 is selected as the bridge to connect the specific grinding energy and size distribution of products. The modified breakage model is combined with the King's equation to compare the energy efficiency on the premise of feed in the same fineness. Comprehensive comparison of the results obtained from both lab-scale and industrial-scale VSPs suggests that the MPS type VSP shows the higher grinding energy efficiency and lower total energy consumption

    The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat

    Get PDF
    Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication‐related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement

    Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches

    Full text link
    Accurate estimation of grassland biomass and its dynamics are crucial not only for the biogeochemical dynamics of terrestrial ecosystems, but also for the sustainable use of grassland resources. However, estimations of grassland biomass on large spatial scale usually suffer from large variability and mostly lack quantitative uncertainty analyses. In this study, the spatial grassland biomass estimation and its uncertainty were assessed based on 265 field measurements and remote sensing data across Northern China during 2001-2005. Potential sources of uncertainty, including remote sensing data sources (DATsrc), model forms (MODfrm) and model parameters (biomass allocation, BMallo, e.g. root:shoot ratio), were determined and their relative contribution was quantified. The results showed that the annual grassland biomass in Northern China was 1268.37 +/- 180.84Tg (i.e., 532.02 +/- 99.71 g/m(2)) during 2001-2005, increasing from western to eastern area, with a mean relative uncertainty of 19.8%. There were distinguishable differences among the uncertainty contributions of three sources (BMallo >DATsrc>MODfrm), which contributed 52%, 27% and 13%, respectively. This study highlighted the need to concern the uncertainty in grassland biomass estimation, especially for the uncertainty related to BMallo. (C) 2015 Elsevier Ltd. All rights reserved

    Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA

    Get PDF
    AbstractIn mammals, the inducible cytokine interleukin 10 is a feedback negative regulator of inflammation. To determine the extent to which this function is conserved in birds, recombinant chicken IL-10 was expressed as a secreted human Ig Fc fusion protein (chIL-10-Fc) and used to immunise mice. Five monoclonal antibodies (mAb) which specifically recognise chicken IL-10 were generated and characterised. Two capture ELISA assays were developed which detected native chIL-10 secreted from chicken bone marrow-derived macrophages (chBMMs) stimulated with lipopolysaccharide (LPS). Three of the mAbs detected intracellular IL-10. This was detected in only a subset of the same LPS-stimulated chBMMs. The ELISA assay also detected massive increases in circulating IL-10 in chickens challenged with the coccidial parasite, Eimeria tenella. The same mAbs neutralised the bioactivity of recombinant chIL-10. The role of IL-10 in feedback control was tested in vitro. The neutralising antibodies prevented IL-10-induced inhibition of IFN-γ synthesis by mitogen-activated lymphocytes and increased nitric oxide production in LPS-stimulated chBMMs. The results confirm that IL-10 is an inducible feedback regulator of immune response in chickens, and could be the target for improved vaccine efficacy or breeding strategies

    The role of type I interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge

    Get PDF
    International audienceMammalian type I interferons (IFNα/β) are known to modulate inflammatory processes in addition to their antiviral properties. Indeed, virus-induced type I interferons regulate the mammalian phagocyte immune response to bacteria during superinfections. However, it remains unresolved whether type I IFNs similarly impact the chicken macrophage immune response. We first evidenced that IFNα and IFNβ act differently in terms of gene expression stimulation and activation of intracellular signaling pathways in chicken macrophages. Next, we showed that priming of chicken macrophages with IFNα increased bacteria uptake, boosted bacterial-induced ROS/NO production and led to an increased transcriptional expression or production of NOS2/NO, IL1B/IL-1β and notably IFNB/IFNβ. Neutralization of IFNβ during bacterial challenge limited IFNα-induced augmentation of the pro-inflammatory response. In conclusion, we demonstrated that type I IFNs differently regulate chicken macrophage functions and drive a pro-inflammatory response to bacterial challenge. These findings shed light on the diverse functions of type I IFNs in chicken macrophages
    corecore