236 research outputs found

    The Effect of Stochastic Noise on Quantum State Transfer

    Full text link
    We consider the effect of classical stochastic noise on control laser pulses used in a scheme for transferring quantum information between atoms, or quantum dots, in separate optical cavities via an optical connection between cavities. We develop a master equation for the dynamics of the system subject to stochastic errors in the laser pulses, and use this to evaluate the sensitivity of the transfer process to stochastic pulse shape errors for a number of different pulse shapes. We show that under certain conditions, the sensitivity of the transfer to the noise depends on the pulse shape, and develop a method for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review

    Optimized loading of an optical dipole trap for the production of Chromium BECs

    Full text link
    We report on a strategy to maximize the number of chromium atoms transferred from a magneto-optical trap into an optical trap through accumulation in metastable states via strong optical pumping. We analyse how the number of atoms in a chromium Bose Einstein condensate can be raised by a proper handling of the metastable state populations. Four laser diodes have been implemented to address the four levels that are populated during the MOT phase. The individual importance of each state is specified. To stabilize two of our laser diode, we have developed a simple ultrastable passive reference cavity whose long term stability is better than 1 MHz

    Towards coherent optical control of a single hole spin: rabi rotation of a trion conditional on the spin state of the hole

    Get PDF
    A hole spin is a potential solid-state q-bit, that may be more robust against nuclear spin induced dephasing than an electron spin. Here we propose and demonstrate the sequential preparation, control and detection of a single hole spin trapped on a self-assembled InGaAs/GaAs quantum dot. The dot is embedded in a photodiode structure under an applied electric field. Fast, triggered, initialization of a hole spin is achieved by creating a spin-polarized electron-hole pair with a picosecond laser pulse, and in an applied electric field, waiting for the electron to tunnel leaving a spin-polarized hole. Detection of the hole spin with picoseconds time resolution is achieved using a second picosecond laser pulse to probe the positive trion transition, where a trion is created conditional on the hole spin being detected as a change in photocurrent. Finally, using this setup we observe a Rabi rotation of the hole-trion transition that is conditional on the hole spin, which for a pulse area of 2 pi can be used to impart a phase shift of pi between the hole spin states, a non-general manipulation of the hole spin. (C) 2009 Elsevier Ltd. All rights reserved

    High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6

    Get PDF
    A method for determination of atomic dipole matrix elements of principal transitions from the value of dispersion coefficient C_6 of molecular potentials correlating to two ground-state atoms is proposed. The method is illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach spectroscopy. The following reduced matrix elements are determined < 6S_{1/2} || D || 6P_{1/2} > =4.5028(60) |e| a0 and =6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are consistent with the results of the most accurate direct lifetime measurements and have a similar uncertainty. It is argued that the uncertainty can be considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig

    Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    Get PDF
    Globally, the number of patients undergoing maintenance dialysis is increasing, yet throughout the world there is significant variability in the practice of initiating dialysis. Factors such as availability of resources, reasons for starting dialysis, timing of dialysis initiation, patient education and preparedness, dialysis modality and access, as well as varied \u201ccountry-specific\u201d factors significantly affect patient experiences and outcomes. As the burden of end-stage kidney disease (ESKD) has increased globally, there has also been a growing recognition of the importance of patient involvement in determining the goals of care and decisions regarding treatment. In January 2018, KDIGO (Kidney Disease: Improving Global Outcomes) convened a Controversies Conference focused on dialysis initiation, including modality choice, access, and prescription. Here we present a summary of the conference discussions, including identified knowledge gaps, areas of controversy, and priorities for research. A major novel theme represented during the conference was the need to move away from a \u201cone-size-fits-all\u201d approach to dialysis and provide more individualized care that incorporates patient goals and preferences while still maintaining best practices for quality and safety. Identifying and including patient-centered goals that can be validated as quality indicators in the context of diverse health care systems to achieve equity of outcomes will require alignment of goals and incentives between patients, providers, regulators, and payers that will vary across health care jurisdictions

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Metabolic network failures in Alzheimer's disease: A biochemical road map

    Get PDF
    IntroductionThe Alzheimer's Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer's disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance.MethodsFasting serum samples from the Alzheimer's Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted.Results Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1–42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease.DiscussionMetabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery.Analytical BioScience

    Home dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference

    Get PDF
    Home dialysis modalities (home hemodialysis [HD] and peritoneal dialysis [PD]) are associated with greater patient autonomy and treatment satisfaction compared with in-center modalities, yet the level of home-dialysis use worldwide is low. Reasons for limited utilization are context-dependent, informed by local resources, dialysis costs, access to healthcare, health system policies, provider bias or preferences, cultural beliefs, individual lifestyle concerns, potential care-partner time, and financial burdens. In May 2021, KDIGO (Kidney Disease: Improving Global Outcomes) convened a controversies conference on home dialysis, focusing on how modality choice and distribution are determined and strategies to expand home-dialysis use. Participants recognized that expanding use of home dialysis within a given health system requires alignment of policy, fiscal resources, organizational structure, provider incentives, and accountability. Clinical outcomes across all dialysis modalities are largely similar, but for specific clinical measures, one modality may have advantages over another. Therefore, choice among available modalities is preference-sensitive, with consideration of quality of life, life goals, clinical characteristics, family or care-partner support, and living environment. Ideally, individuals, their care-partners, and their healthcare teams will employ shared decision-making in assessing initial and subsequent kidney failure treatment options. To meet this goal, iterative, high-quality education and support for healthcare professionals, patients, and care-partners are priorities. Everyone who faces dialysis should have access to home therapy. Facilitating universal access to home dialysis and expanding utilization requires alignment of policy considerations and resources at the dialysis-center level, with clear leadership from informed and motivated clinical teams
    • …
    corecore