533 research outputs found

    Perturbative quantum gravity with the Immirzi parameter

    Get PDF
    We study perturbative quantum gravity in the first-order tetrad formalism. The lowest order action corresponds to Einstein-Cartan plus a parity-odd term, and is known in the literature as the Holst action. The coupling constant of the parity-odd term can be identified with the Immirzi parameter of loop quantum gravity. We compute the quantum effective action in the one-loop expansion. As in the metric second-order formulation, we find that in the case of pure gravity the theory is on-shell finite, and the running of Newton's constant and the Immirzi parameter is inessential. In the presence of fermions, the situation changes in two fundamental aspects. First, non-renormalizable logarithmic divergences appear, as usual. Second, the Immirzi parameter becomes a priori observable, and we find that it is renormalized by a four-fermion interaction generated by radiative corrections. We compute its beta function and discuss possible implications. The sign of the beta function depends on whether the Immirzi parameter is larger or smaller than one in absolute value, and the values plus or minus one are UV fixed-points (we work in Euclidean signature). Finally, we find that the Holst action is stable with respect to radiative corrections in the case of minimal coupling, up to higher order non-renormalizable interactions.Comment: v2 minor amendment

    Effective action in a higher-spin background

    Full text link
    We consider a free massless scalar field coupled to an infinite tower of background higher-spin gauge fields via minimal coupling to the traceless conserved currents. The set of Abelian gauge transformations is deformed to the non-Abelian group of unitary operators acting on the scalar field. The gauge invariant effective action is computed perturbatively in the external fields. The structure of the various (divergent or finite) terms is determined. In particular, the quadratic part of the logarithmically divergent (or of the finite) term is expressed in terms of curvatures and related to conformal higher-spin gravity. The generalized higher-spin Weyl anomalies are also determined. The relation with the theory of interacting higher-spin gauge fields on anti de Sitter spacetime via the holographic correspondence is discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE

    Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity

    Full text link
    We analyze various supersymmetry multiplets containing the supercurrent and the energy-momentum tensor. The most widely known such multiplet, the Ferrara-Zumino (FZ) multiplet, is not always well-defined. This can happen once Fayet-Iliopoulos (FI) terms are present or when the Kahler form of the target space is not exact. We present a new multiplet S which always exists. This understanding of the supersymmetry current allows us to obtain new results about the possible IR behavior of supersymmetric theories. Next, we discuss the coupling of rigid supersymmetric theories to supergravity. When the theory has an FZ-multiplet or it has a global R-symmetry the standard formalism can be used. But when this is not the case such simple gauging is impossible. Then, we must gauge the current S. The resulting theory has, in addition to the graviton and the gravitino, another massless chiral superfield Phi which is essential for the consistency of the theory. Some of the moduli of various string models play the role of Phi. Our general considerations, which are based on the consistency of supergravity, show that such moduli cannot be easily lifted thus leading to constraints on gravity/string models.Comment: 27 pages. v2: references added and minor changes. v3: minor changes. v4: minor clarification

    Effective Lagrangians and Parity-Conserving Time-Reversal Violation at Low Energies

    Full text link
    Using effective Lagrangians, we argue that any time-reversal-violating but parity-conserving effects are too small to be observed in flavor-conserving nuclear processes without dramatic improvement in experimental accuracy. In the process we discuss other arguments that have appeared in the literature.Comment: Revised manuscript, 11 pages, RevTex, epsf.st

    Gauge Theories and the Standard Model

    Get PDF
    This chapter, Chaps. 3 and 4 present a self-contained introduction to the Standard Model of fundamental interactions, which describes in the unified framework of gauge quantum field theories all of the fundamental forces of nature but gravity: the strong, weak, and electromagnetic interactions. This set of chapters thus provides both an introduction to the Standard Model, and to quantum field theory at an intermediate level. The union of the three chapters can be taken as a masters\u2019 level course reference, and it requires as a prerequisite an elementary knowledge of quantum field theory, at the level of many introductory textbooks, such as Vol. 1 of Aitchison-Hey, or, at a somewhat more advanced level, Maggiore. The treatment is subdivided into three parts, each corresponding to an individual chapter, with more advanced field theory topics introduced along the way as needed. Specifically, this chapter presents the general structure of the Standard Model, its field content, and symmetry structure. This involves an introduction to non-abelian gauge theories both at the classical and quantum level. Also, it involves a discussion of spontaneous symmetry breaking and the Higgs mechanism, that play a crucial role in the architecture of the Standard Model, and their interplay with the quantization of gauge theories. Chapter 3 then presents the electroweak sector of the Standard Model. This requires introducing the concepts of CP violation and mixing, and of radiative corrections. Finally, Chap. 4 presents the strong sector of the theory, which requires a more detailed treatment of renormalization and the renormalization group

    Chiral perturbation theory in a magnetic background - finite-temperature effects

    Full text link
    We consider chiral perturbation theory for SU(2) at finite temperature TT in a constant magnetic background BB. We compute the thermal mass of the pions and the pion decay constant to leading order in chiral perturbation theory in the presence of the magnetic field. The magnetic field gives rise to a splitting between Mπ0M_{\pi^0} and Mπ±M_{\pi^{\pm}} as well as between Fπ0F_{\pi^0} and Fπ±F_{\pi^{\pm}}. We also calculate the free energy and the quark condensate to next-to-leading order in chiral perturbation theory. Both the pion decay constants and the quark condensate are decreasing slower as a function of temperature as compared to the case with vanishing magnetic field. The latter result suggests that the critical temperature TcT_c for the chiral transition is larger in the presence of a constant magnetic field. The increase of TcT_c as a function of BB is in agreement with most model calculations but in disagreement with recent lattice calculations.Comment: 24 pages and 9 fig

    Safety, immunogenicity, and transplacental antibody transport of conjugated and polysaccharide pneumococcal vaccines administered to pregnant women with HIV: a multicentre randomised controlled trial

    Get PDF
    Background: Pneumococcus remains an important cause of morbidity in pregnant women with HIV and their infants. We compared the safety and immunogenicity of PCV-10 and PPV-23 with placebo administered in pregnancy. Methods: This double-blind, multicentre, randomised controlled trial was done at eight outpatient clinics in Brazil. Eligible participants were adult women with HIV who were pregnant at a gestational age between 14 weeks and less than 34 weeks and who were taking antiretroviral therapy at study entry. Participants were randomly assigned (1:1:1) to receive either PCV-10, PPV-23, or placebo. Participants and study teams were unaware of treatment allocation. Antibodies against seven vaccine serotypes in PCV-10 and PPV-23 were measured by ELISA. The primary outcomes were maternal and infant safety assessed by the frequency of adverse events of grade 3 or higher; maternal seroresponse (defined as ≥2-fold increase in antibodies from baseline to 28 days after immunisation) against five or more serotypes; and infant seroprotection (defined as anti-pneumococcus antibody concentration of ≥0·35 μg/mL) against five or more serotypes at 8 weeks of life. The study was powered to detect differences of 20% or higher in the primary immunological outcomes between treatment groups. This trial is registered with ClinicalTrials.gov, NCT02717494. Findings: Between April 1, 2016, and Nov 30, 2017, we enrolled 347 pregnant women with HIV, of whom 116 were randomly assigned to the PCV-10 group, 115 to the PPV-23 group, and 116 to the placebo group. One participant in the PCV-10 group did not receive the vaccine and was excluded from subsequent analyses. The frequency of adverse events of grade 3 or higher during the first 4 weeks was similar in the vaccine and placebo groups (3% [90% CI 1–7] for the PCV-10 group, 2% [0–5] for the PPV-23 group, and 3% [1–8] for the placebo group). However, injection site and systemic grade 2 adverse reactions were reported more frequently during the first 4 weeks in the vaccine groups than in the placebo group (14% [9–20] for the PCV-10 group, 7% [4–12] for the PPV-23 group, and 3% [1–7] for the placebo group). The frequency of grade 3 or higher adverse effects was similar across maternal treatment groups (20% [14–27] for the PCV-10 group, 21% [14–28] for the PPV-23 group, and 20% [14–27] for the placebo group). Seroresponses against five or more serotypes were present in 74 (65%) of 114 women in the PCV-10 group, 72 (65%) of 110 women in the PPV-23 group, and none of the 113 women in the placebo group at 4 weeks post vaccination (p<0·0001 for PPV-23 group vs placebo and PCV-10 group vs placebo). Seroresponse differences of 20% or higher in vaccine compared with placebo recipients persisted up to 24 weeks post partum. At birth, 76 (67%) of 113 infants in the PCV-10 group, 62 (57%) of 109 infants in the PPV-23 group, and 19 (17%) of 115 infants in the placebo group had seroprotection against five or more serotypes (p<0·0001 for PPV-23 vs placebo and PCV-10 vs placebo). At 8 weeks, the outcome was met by 20 (19%) of 108 infants in the PCV-10 group, 24 (23%) of 104 infants in the PPV-23 group, and one (1%) of 109 infants in the placebo group (p<0·0001). Although a difference of 20% or higher compared with placebo was observed only in the infants who received PPV-23 at 8 weeks of life, the difference between the two vaccine groups was not appreciable. Interpretation: PCV-10 and PPV-23 were equally safe and immunogenic in pregnant women with HIV and conferred similar levels of seroprotection to their infants. In areas in which childhood PCV administration decreased the circulation of PCV serotypes, PPV-23 administration to pregnant women with HIV might be more advantageous than PCV by virtue of including a broader range of serotypes

    Development and preliminary evaluation of the VPS ReplaySuite: a virtual double-headed microscope for pathology

    Get PDF
    BACKGROUND: Advances in computing and telecommunications have resulted in the availability of a range of online tools for use in pathology training and quality assurance. The majority focus on either enabling pathologists to examine and diagnose cases, or providing image archives that serve as reference material. Limited emphasis has been placed on analysing the diagnostic process used by pathologists to reach a diagnosis and using this as a resource for improving diagnostic performance. METHODS: The ReplaySuite is an online pathology software tool that presents archived virtual slide examinations to pathologists in an accessible video-like format, similar to observing examinations with a double-headed microscope. Delivered through a customised web browser, it utilises PHP (Hypertext PreProcessor) to interact with a remote database and retrieve data describing virtual slide examinations, performed using the Virtual Pathology Slide (VPS). To demonstrate the technology and conduct a preliminary evaluation of pathologists opinions on its potential application in pathology training and quality assurance, 70 pathologists were invited to use the application to review their own and other pathologists examinations of 10 needle-core breast biopsies and complete an electronic survey. 9 pathologists participated, and all subsequently completed an exit survey. RESULTS: Of those who replayed an examination by another pathologist, 83.3% (5/6) agreed that replays provided an insight into the examining pathologists diagnosis and 33.3% (2/6) reconsidered their own diagnosis for at least one case. Of those who reconsidered their original diagnosis, all re-classified either concordant with group consensus or original glass slide diagnosis. 77.7% (7/9) of all participants, and all 3 participants who replayed more than 10 examinations stated the ReplaySuite to be of some or great benefit in pathology training and quality assurance. CONCLUSION: Participants conclude the ReplaySuite to be of some or of great potential benefit to pathology training and quality assurance and consider the ReplaySuite to be beneficial in evaluating the diagnostic trace of an examination. The ReplaySuite removes temporal and spatial issues that surround the use of double-headed microscopes by allowing examinations to be reviewed at different times and in different locations to the original examination. While the evaluation set was limited and potentially subject to bias, the response of participants was favourable. Further work is planned to determine whether use of the ReplaySuite can result in improved diagnostic ability

    Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: Laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses

    Get PDF
    Background: 18F-FLT is a novel PET radiotracer which has demonstrated a strong potential utility for imaging cellular proliferation in human tumors in vivo. To facilitate future regulatory approval of 18F-FLT for clinical use, we wished to demonstrate the safety of radiotracer doses of 18F-FLT administered to human subjects, by: 1) performing an evaluation of the toxicity of 18F-FLT administered in radiotracer amounts for PET imaging, 2) comparing a radiotracer dose of FLT to clinical trial doses of FLT. Methods: Twenty patients gave consent to a 18F-FLT injection, subsequent PET imaging, and blood draws. For each patient, blood samples were collected at multiple times before and after 18F-FLT PET. These samples were assayed for a comprehensive metabolic panel, total bilirubin, complete blood and platelet counts. 18F-FLT doses of 2.59 MBq/Kg with a maximal dose of 185 MBq (5 mCi) were used. Blood time-activity curves were generated for each patient from dynamic PET data, providing a measure of the area under the FLT concentration curve for 12 hours (AUC12). Results: No side effects were reported. Only albumin, red blood cell count, hematocrit and hemoglobin showed a statistically significant decrease over time. These changes are attributed to IV hydration during PET imaging and to subsequent blood loss at surgery. The AUC12 values estimated from imaging data are not significantly different from those found from serial measures of FLT blood concentrations (p = 0.66). The blood samples-derived AUC12 values range from 0.232 ng*h/mL to 1.339 ng*h/mL with a mean of 0.802 ďż˝ 0.303 ng*h/mL. This corresponds to 0.46% to 2.68% of the lowest and least toxic clinical trial AUC12 of 50 ng*h/mL reported by Flexner et al (1994). This single injection also corresponds to a nearly 3,000-fold lower cumulative dose than in Flexner's twice daily trial. Conclusion: This study shows no evidence of toxicity or complications attributable to 18F-FLT injected intravenously.This study was supported by NIH grant R01 CA115559, 1R01 CA107264, and 1R01 CA80907

    Computational cancer biology: education is a natural key to many locks

    Get PDF
    BACKGROUND: Oncology is a field that profits tremendously from the genomic data generated by high-throughput technologies, including next-generation sequencing. However, in order to exploit, integrate, visualize and interpret such high-dimensional data efficiently, non-trivial computational and statistical analysis methods are required that need to be developed in a problem-directed manner. DISCUSSION: For this reason, computational cancer biology aims to fill this gap. Unfortunately, computational cancer biology is not yet fully recognized as a coequal field in oncology, leading to a delay in its maturation and, as an immediate consequence, an under-exploration of high-throughput data for translational research. SUMMARY: Here we argue that this imbalance, favoring ’wet lab-based activities’, will be naturally rectified over time, if the next generation of scientists receives an academic education that provides a fair and competent introduction to computational biology and its manifold capabilities. Furthermore, we discuss a number of local educational provisions that can be implemented on university level to help in facilitating the process of harmonization
    • …
    corecore