4,665 research outputs found

    More Effective Field Theory for Nonrelativistic Scattering

    Get PDF
    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale --- the scattering length --- which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1S_0 np phase shift up to the pion production threshold.Comment: 15 pages, TeX ; macros: harvmac, eps

    Effective Field Theory for Nuclear Physics

    Get PDF
    I summarize the motivation for the effective field theory approach to nuclear physics, and highlight some of its recent accomplishments. The results are compared with those computed in potential models.Comment: Talk delivered at Baryons '98, Bonn, Sept. 22, 1998. 15 pages, 9 figure

    Gravitational waves from an early matter era

    Get PDF
    We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as LIGO and LISA. We use relativistic perturbation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for Advanced LIGO or 0.005 for LISA, otherwise numerical calculations of the non-linear evolution on sub-Hubble scales are required.Comment: 23 pages, 2 figure

    Nucleon-Nucleon Scattering from Effective Field Theory

    Get PDF
    We perform a nonperturbative calculation of the 1S0 NN scattering amplitude using an effective field theory (EFT) expansion. The expansion we advocate is a modification of what has been used previously; it is no a chiral expansion in powers of the pion mass. We use dimensional regularization throughout and the MS-bar subtraction scheme; our final result depends only on physical observables. We show that the EFT expansion of the quantity |p|cot delta(p) converges at momenta much greater than the scale that characterizes the derivative expansion of the EFT Lagrangian. Our conclusions are optimistic about the applicability of an EFT approach to the quantitative study of nuclear matter.Comment: Revised discussion of power counting in the EFT expansion. Tex file uses harvmac, epsf macros, 35 pages with 9 postscript figure

    Constraining the Metallicity of the Low Density Lyman-alpha Forest Using OVI Absorption

    Get PDF
    We search for OVI absorption in a Keck HIRES spectrum of the z=3.62 quasar Q1422+231. Comparison of CIV measurements to cosmological simulations shows that \lya forest absorbers with N_HI > 10^{14.5} have [C/H]~=-2.5, for the UV background spectrum of Haardt & Madau (HM). Lower column density absorption arises in lower density gas, where OVI is the most sensitive metal tracer. Since OVI lines lie at wavelengths contaminated by Lyman series absorption, we interpret our Q1422 results by comparing to artificial spectra drawn from an SPH simulation of a Lambda-dominated CDM model. A search for deep, narrow features in Q1422 yields only a few candidate OVI lines, statistically consistent with the number in artificial spectra with no metals; spectra generated with the HM background and [O/H] >= -2.5 predict too many narrow lines. However, applying the optical depth ratio technique of Songaila (1998), we DO find significant OVI associated with CIV systems; matching Q1422 requires [O/C]~=+0.5, implying [O/H]~=-2.0. Taken together these results imply that (a) the metallicity in the low density IGM is at least a factor of three below that in the overdense regions where CIV absorption is detectable, and (b) oxygen is overabundant in these regions, consistent with the enrichment pattern of old halo stars. If the UV background is heavily truncated above 4 Ry, an implausibly high oxygen overabundance ([O/C]>+2) is required by the data; thus a majority of the volume of the universe must have undergone helium reionization by z=3.(Abridged)Comment: Submitted to ApJ, 48 pp including 14 ps figures, uses aaspp4.st

    Fourier Analysis of Redshift Space Distortions and the Determination of Omega

    Get PDF
    The peculiar velocities of galaxies distort the pattern of galaxy clustering in redshift space, making the redshift space power spectrum anisotropic. In the linear regime, the strength of this distortion depends only on the ratio βf(Ω)/bΩ0.6/b\beta \equiv f(\Omega)/b \approx \Omega^{0.6}/b, where Ω\Omega is the cosmological density parameter and bb is the bias parameter. We derive a linear theory estimator for β\beta based on the harmonic moments of the redshift space power spectrum. Using N-body simulations, we examine the impact of non-linear gravitational clustering on the power spectrum anisotropy and on our β\beta-estimator. Non-linear effects can be important out to wavelengths λ50\lambda \sim 50Mpc/h or larger; in most cases, they lower the quadrupole moment of the power spectrum and thereby depress the estimate of β\beta below the true value. With a sufficiently large redshift survey, the scaling of non-linear effects may allow separate determinations of Ω\Omega and bb. We describe a practical technique for measuring the anisotropy of the power spectrum from galaxy redshift surveys, and we test the technique on mock catalogues drawn from the N-body simulations. Preliminary application of our methods to the 1.2 Jy IRAS galaxy survey yields βest0.30.4\beta_{est} \sim 0.3-0.4 at wavelengths λ3040\lambda \sim 30-40Mpc/h . Non-linear effects remain important at these scales, so this estimate of β\beta is probably lower than the true value.Comment: uuencoded compressed postscript fil

    Conformal relativity versus Brans-Dicke and superstring theories

    Full text link
    Conformal relativity theory which is also known as Hoyle-Narlikar theory has recently been given some new interest. It is an extended relativity theory which is invariant with respect to conformal transformations of the metric. In this paper we show how conformal relativity is related to the Brans-Dicke theory and to the low-energy-effective superstring theory. We show that conformal relativity action is equaivalent to a transformed Brans-Dicke action for Brans-Dicke parameter ω=3/2\omega = -3/2 in contrast to a reduced (graviton-dilaton) low-energy-effective superstring action which corresponds to a Brans-Dicke action with Brans-Dicke parameter ω=1\omega = -1. In fact, Brans-Dicke parameter ω=3/2\omega =-3/2 gives a border between a standard scalar field evolution and a ghost. We also present basic cosmological solutions of conformal relativity in both Einstein and string frames. The Eintein limit for flat conformal cosmology solutions is unique and it is flat Minkowski space. This requires the scalar field/mass evolution instead of the scale factor evolution in order to explain cosmological redshift. It is interesting that like in ekpyrotic/cyclic models, a possible transition through a singularity in conformal cosmology in the string frame takes place in the weak coupling regime.Comment: REVTEX4, 12 pages, an improved version, references adde
    corecore