99 research outputs found

    Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells

    Get PDF
    BACKGROUND: Nitrogen-containing bisphosphonates (N-BPs) have been designed to inhibit osteoclast-mediated bone resorption. However, it is now accepted that part of their anti-tumor activities is related to interference with the mevalonate pathway. METHODS: We investigated the effects of zoledronic acid (ZOL), on cell proliferation and protein isoprenylation in two tumoral (LnCAP, PC-3,), and one normal established (PNT1-A) prostatic cell line. To assess if inhibition of geranyl-geranylation by ZOL impairs the biological activity of RhoA GTPase, we studied the LPA-induced formation of stress fibers. The inhibitory effect of ZOL on geranyl geranyl transferase I was checked biochemically. Activity of ZOL on cholesterol biosynthesis was determined by measuring the incorporation of (14)C mevalonate in cholesterol. RESULTS: ZOL induced dose-dependent inhibition of proliferation of all the three cell lines although it appeared more efficient on the untransformed PNT1A. Whatever the cell line, 20 μM ZOL-induced inhibition was reversed by geranyl-geraniol (GGOH) but neither by farnesol nor mevalonate. After 48 hours treatment of cells with 20 μM ZOL, geranyl-geranylation of Rap1A was abolished whereas farnesylation of HDJ-2 was unaffected. Inhibition of Rap1A geranyl-geranylation by ZOL was rescued by GGOH and not by FOH. Indeed, as observed with treatment by a geranyl-geranyl transferase inhibitor, treatment of PNT1-A cells with 20 μM ZOL prevented the LPA-induced formation of stress fibers. We checked that in vitro ZOL did not inhibit geranyl-geranyl-transferase I. ZOL strongly inhibited cholesterol biosynthesis up to 24 hours but at 48 hours 90% of this biosynthesis was rescued. CONCLUSION: Although zoledronic acid is currently the most efficient bisphosphonate in metastatic prostate cancer management, its mechanism of action in prostatic cells remains unclear. We suggest in this work that although in first intention ZOL inhibits FPPsynthase its main biological actitivity is directed against protein Geranylgeranylation

    Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of large pores in the blood-tumor barrier (BTB) of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state <it>in vivo </it>a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed <it>in vivo </it>the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site.</p> <p>Methods</p> <p>Generation 5 (G5) through generation 8 (G8) polyamidoamine dendrimers were labeled with gadolinium (Gd)-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized <it>in vitro </it>by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5) the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized <it>in vivo </it>over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps.</p> <p>Results</p> <p>The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8 dendrimers were 13 ± 1 nm. The BTB of ectopic RG-2 gliomas was more permeable than the BTB of orthotopic RG-2 gliomas to all Gd-dendrimer generations except for Gd-G8. The BTB of both ectopic RG-2 gliomas and orthotopic RG-2 gliomas was not permeable to Gd-G8 dendrimers.</p> <p>Conclusion</p> <p>The physiologic upper limit of pore size in the BTB of malignant solid tumor microvasculature is approximately 12 nanometers. In the physiologic state <it>in vivo </it>the luminal fibrous glycocalyx of the BTB of malignant brain tumor and peripheral tumors is the primary impediment to the effective transvascular transport of particles across the BTB of malignant solid tumor microvasculature independent of tumor host site. The higher permeability of malignant peripheral tumor microvasculature to macromolecules smaller than approximately 12 nm in diameter is attributable to the presence of a greater number of pores underlying the glycocalyx of the BTB of malignant peripheral tumor microvasculature.</p

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care

    Get PDF
    Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies

    Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells-5

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells"</p><p>BMC Cancer 2006;6():60-60.</p><p>Published online 15 Mar 2006</p><p>PMCID:PMC1434759.</p><p>Copyright © 2006 Goffinet et al; licensee BioMed Central Ltd.</p> to the medium for 2 hours more. Sterols were separated by thin layer chromatography (silica gel F/ethyl acetate). [C]-Cholesterol was revealed and quantified by autoradiography with Phophorimager(Molecular Dynamics)

    Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells"</p><p>BMC Cancer 2006;6():60-60.</p><p>Published online 15 Mar 2006</p><p>PMCID:PMC1434759.</p><p>Copyright © 2006 Goffinet et al; licensee BioMed Central Ltd.</p> (0.5 μM, 8–10 Ci/mmol) incorporation into a mutant form of H-ras with a geranyl-geranylation CAXX box. The level of prenylation is expressed as a percentage of maximum incorporation of [H]-prenyl, as determined by allowing the uninhibited reaction to go to completion. : Western-blot analysis; PC-3 cells are treated by vehicle, ZOL 20 μM; ZOL 20 μM + FOH 10 μM; ZOL 20 μM + GGOH 10 μM

    Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells"</p><p>BMC Cancer 2006;6():60-60.</p><p>Published online 15 Mar 2006</p><p>PMCID:PMC1434759.</p><p>Copyright © 2006 Goffinet et al; licensee BioMed Central Ltd.</p>nd D3, cells were treated by vehicle or increasing doses of zoledronate (ZOL: 5, 10, 15, 20 μM). At D5, the cells were fixed with TCA and stained with 0.4% sulforhodamine. Staining intensity was quantified at 540 nm. Results are expressed as the ratio OD/ODof three independent assays each performed six times. Error bars indicate inter-assay mean ± 1 SD. * indicates a significant difference versus non-treated cells (p < 0.01). PC3 PNT1A LNCa
    • …
    corecore