2,036 research outputs found
On the physics description of fusion plasmas i
The one fluid, two fluid and kinetic descriptions of fusion plasmas are discussed from basic theoretical points and from that of application to present day problems of relevance to fusion reactors. In particular both statistical and deterministic aspects are considered. Of special importance are non-Markovian effects
New Kinetic Equations and Bogolyubov Energy Spectrum in a Fermi Quantum Plasma
New type of quantum kinetic equations of the Fermi particles are derived. The
Bogolyubov's type of dispersion relation, which is valid for the Bose fluid, is
disclosed. Model of neutral Bose atoms in dense strongly coupled plasmas with
attractive interaction is discussed. A set of fluid equations describing the
quantum plasmas is obtained. Furthermore, the equation of state of a degenerate
Fermi plasma is derived.Comment: Submitted to Physical Review Letter
Nonlinear Interactions Between Gravitational Radiation and Modified Alfven Modes in Astrophysical Dusty Plasmas
We present an investigation of nonlinear interactions between Gravitational
Radiation and modified Alfv\'{e}n modes in astrophysical dusty plasmas.
Assuming that stationary charged dust grains form neutralizing background in an
electron-ion-dust plasma, we obtain the three wave coupling coefficients, and
calculate the growth rates for parametrically coupled gravitational radiation
and modified Alfv\'{e}n-Rao modes. The threshold value of the gravitational
wave amplitude associated with convective stabilization is particularly small
if the gravitational frequency is close to twice the modified Alfv\'en
wave-frequency. The implication of our results to astrophysical dusty plasmas
is discussed.Comment: A few typos corrected. Published in Phys. Rev.
Perceived Differences in the Management of Mental Health Patients in Remote and Rural Australia and Strategies for Improvement: Findings from a National Qualitative Study of Emergency Clinicians
Introduction. We aimed to describe perceptions of Australian emergency clinicians of differences in management of mental health patients in rural and remote Australia compared with metropolitan hospitals, and what could be improved. Methods. Descriptive exploratory study using semi-structured telephone interviews of doctors and nurses in Australian emergency departments (EDs), stratified to represent states and territories and rural or metropolitan location. Content analysis of responses developed themes and sub-themes. Results. Of 39 doctors and 32 nurses responding to email invitation, 20 doctors and 16 nurses were interviewed. Major themes were resources/environment, staff and patient issues. Clinicians noted lack of access in rural areas to psychiatric support services, especially alcohol and drug services, limited referral options, and a lack of knowledge, understanding and acceptance of mental health issues. The clinicians suggested resource, education and guideline improvements, wanting better access to mental health experts in rural areas, better support networks and visiting specialist coverage, and educational courses tailored to the needs of rural clinicians. Conclusion. Clinicians managing mental health patients in rural and remote Australian EDs lack resources, support services and referral capacity, and access to appropriate education and training. Improvements would better enable access to support and referral services, and educational opportunities
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum
We present the angular power spectrum derived from the first-year Wilkinson
Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power
spectrum estimation methods and data combinations and demonstrate that the
results are robust. The data are modestly contaminated by diffuse Galactic
foreground emission, but we show that a simple Galactic template model is
sufficient to remove the signal. Point sources produce a modest contamination
in the low frequency data. After masking ~700 known bright sources from the
maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130
uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic
errors are negligible compared to the (modest) level of foreground emission.
Our best estimate of the power spectrum is derived from 28 cross-power spectra
of statistically independent channels. The final spectrum is essentially
independent of the noise properties of an individual radiometer. The resulting
spectrum provides a definitive measurement of the CMB power spectrum, with
uncertainties limited by cosmic variance, up to l~350. The spectrum clearly
exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and
it provides strong support for adiabatic initial conditions. Kogut et al.
(2003) analyze the C_l^TE power spectrum, and present evidence for a relatively
high optical depth, and an early period of cosmic reionization. Among other
things, this implies that the temperature power spectrum has been suppressed by
\~30% on degree angular scales, due to secondary scattering.Comment: One of thirteen companion papers on first-year WMAP results submitted
to ApJ; 44 pages, 14 figures; a version with higher quality figures is also
available at http://lambda.gsfc.nasa.gov/product/map/map_bibliography.htm
Recommended from our members
Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames
One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results
We present cosmological parameter constraints based on the final nine-year
WMAP data, in conjunction with additional cosmological data sets. The WMAP data
alone, and in combination, continue to be remarkably well fit by a
six-parameter LCDM model. When WMAP data are combined with measurements of the
high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities,
Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%.
The amplitude of the primordial spectrum is measured to within 3%, and there is
now evidence for a tilt in the primordial spectrum at the 5sigma level,
confirming the first detection of tilt based on the five-year WMAP data. At the
end of the WMAP mission, the nine-year data decrease the allowable volume of
the six-dimensional LCDM parameter space by a factor of 68,000 relative to
pre-WMAP measurements. We investigate a number of data combinations and show
that their LCDM parameter fits are consistent. New limits on deviations from
the six-parameter model are presented, for example: the fractional contribution
of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter
is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44
eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40
when the full data are analyzed. The joint constraint on Neff and the
primordial helium abundance agrees with the prediction of standard Big Bang
nucleosynthesis. We compare recent PLANCK measurements of the
Sunyaev-Zel'dovich effect with our seven-year measurements, and show their
mutual agreement. Our analysis of the polarization pattern around temperature
extrema is updated. This confirms a fundamental prediction of the standard
cosmological model and provides a striking illustration of acoustic
oscillations and adiabatic initial conditions in the early universe.Comment: 32 pages, 12 figures, v3: Version accepted to Astrophysical Journal
Supplement Series. Includes improvements in response to referee and
community; corrected 3 entries in Table 10, (w0 & wa model). See the Legacy
Archive for Microwave Background Data Analysis (LAMBDA):
http://lambda.gsfc.nasa.gov/product/map/current/ for further detai
- …