146 research outputs found

    Effective free energy for pinned membranes

    Full text link
    We consider membranes adhered through specific receptor-ligand bonds. Thermal undulations of the membrane induce effective interactions between adhesion sites. We derive an upper bound to the free energy that is independent of interaction details. To lowest order in a systematic expansion we obtain two-body interactions which allow to map the free energy onto a lattice gas with constant density. The induced interactions alone are not strong enough to lead to a condensation of individual adhesion sites. A measure of the thermal roughness is shown to depend on the inverse square root of the density of adhesion sites, which is in good agreement with previous computer simulations.Comment: to appear as a Rapid Communication in Phys. Rev.

    Random pinning limits the size of membrane adhesion domains

    Full text link
    Theoretical models describing specific adhesion of membranes predict (for certain parameters) a macroscopic phase separation of bonds into adhesion domains. We show that this behavior is fundamentally altered if the membrane is pinned randomly due to, e.g., proteins that anchor the membrane to the cytoskeleton. Perturbations which locally restrict membrane height fluctuations induce quenched disorder of the random-field type. This rigorously prevents the formation of macroscopic adhesion domains following the Imry-Ma argument [Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975)]. Our prediction of random-field disorder follows from analytical calculations, and is strikingly confirmed in large-scale Monte Carlo simulations. These simulations are based on an efficient composite Monte Carlo move, whereby membrane height and bond degrees of freedom are updated simultaneously in a single move. The application of this move should prove rewarding for other systems also.Comment: revised and extended versio

    An Effective Membrane Model of the Immunological Synapse

    Full text link
    The immunological synapse is a patterned collection of different types of receptors and ligands that forms in the intercellular junction between T Cells and antigen presenting cells (APCs) during recognition. The synapse is implicated in information transfer between cells, and is characterized by different spatial patterns of receptors at different stages in the life cycle of T cells. We obtain a minimalist model that captures this experimentally observed phenomenology. A functional RG analysis provides further insights.Comment: 6 pages, 3 figures, submitted for publicatio

    Effective surface interactions mediated by adhesive particles

    Full text link
    In biomimetic and biological systems, interactions between surfaces are often mediated by adhesive molecules, nanoparticles, or colloids dispersed in the surrounding solution. We present here a general, statistical-mechanical model for two surfaces that interact via adhesive particles. The effective, particle-mediated interaction potential of the surfaces is obtained by integrating over the particles' degrees of freedom in the partition function. Interestingly, the effective adhesion energy of the surfaces exhibits a maximum at intermediate particle concentrations, and is considerably smaller both at low and high concentrations. The effective adhesion energy corresponds to a minimum in the interaction potential at surface separations slightly larger than the particle diameter, while a secondary minimum at surface contact reflects depletion interactions. Our results can be generalized to surfaces with specific receptors for solute particles, and have direct implications for the adhesion of biomembranes and for phase transitions in colloidal systems.Comment: 6 pages, 5 figures; to appear in Europhys. Let

    Dynamic phase separation of fluid membranes with rigid inclusions

    Full text link
    Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but also that multi-body interactions cannot be neglected. In this article, it is shown numerically that shape fluctuations indeed lead to the dynamic separation of the membrane into phases with different inclusion concentrations. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions aggregate at very small inclusion concentrations and for relatively small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure

    Characterization of a Combined CARS and Interferometric Rayleigh Scattering System

    Get PDF
    This paper describes the characterization of a combined Coherent anti-Stokes Raman Spectroscopy and Interferometric Rayleigh Scattering (CARS-IRS) system by reporting the accuracy and precision of the measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A near-adiabatic H2-air Hencken burner flame was used to provide known properties for measurements made with the system. The measurement system is also demonstrated in a small-scale Mach 1.6 H2-air combustion-heated supersonic jet with a co-flow of H2. The system is found to have a precision that is sufficient to resolve fluctuations of flow properties in the mixing layer of the jet

    Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Get PDF
    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF)

    Impermeability effects in three-dimensional vesicles

    Full text link
    We analyse the effects that the impermeability constraint induces on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles.Comment: 16 pages, 7 figure

    The 2018 biomembrane curvature and remodeling roadmap

    Get PDF
    The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo-and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area

    Combining Optimal Control Theory and Molecular Dynamics for Protein Folding

    Get PDF
    A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages
    • …
    corecore