518 research outputs found

    Dynamics of hydration water in deuterated purple membranes explored by neutron scattering

    Get PDF
    The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H2O and D2O, respectively, revealed that membrane and water motions on the ns–ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049–18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H2O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D2O (Weik et al. in J Mol Biol 275:632–634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins

    EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma

    Get PDF
    The oncogene epidermal growth factor receptor variant III (EGFRvIII) is frequently expressed in glioblastomas (GBM) but its impact on therapy response is still under controversial debate. Here we wanted to test if EGFRvIII influences the sensitivity towards the alkylating agent temozolomide (TMZ). Therefore, we retrospectively analyzed the survival of 336 GBM patients, demonstrating that under standard treatment, which includes TMZ, EGFRvIII expression is associated with prolonged survival, but only in patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated tumors. Using isogenic GBM cell lines with endogenous EGFRvIII expression we could demonstrate that EGFRvIII increases TMZ sensitivity and results in enhanced numbers of DNA double-strand breaks and a pronounced S/G2-phase arrest after TMZ treatment. We observed a higher expression of DNA mismatch repair (MMR) proteins in EGFRvIII+ cells and patient tumor samples, which was most pronounced for MSH2 and MSH6. EGFRvIII-specific knockdown reduced MMR protein expression thereby increasing TMZ resistance. Subsequent functional kinome profiling revealed an increased activation of p38- and ERK1/2-dependent signaling in EGFRvIII expressing cells, which regulates MMR protein expression downstream of EGFRvIII. In summary, our results demonstrate that the oncoprotein EGFRvIII sensitizes a fraction of GBM to current standard of care treatment through the upregulation of DNA MMR

    The Maine Tidal Power Initiative: Transdisciplinary sustainability science research for the responsible development of tidal power

    Get PDF
    The Maine Tidal Power Initiative (MTPI), an interdisciplinary team of engineers, marine scientists, oceanographers, and social scientists, is using a transdisciplinary sustainability science approach to collect biophysical and social data necessary for understanding interactions between human and natural systems in the context of tidal power development in Maine. MTPI offers a unique opportunity to better understand how group structure and process influence outcomes in transdisciplinary sustainability science research. Through extensive participant observation and semi-structured interviews we: (1) describe MTPI’s organizational structure; (2) examine MTPI’s research approach and engagement with stakeholders from different sectors of society (i.e., industry, government, and the local community); and (3) identify challenges and opportunities for involving different disciplinary expertise and diverse stakeholders in transformational sustainability science research. We found that MTPI’s holistic mission, non-hierarchical structure, and iterative stakeholder engagement process led to important benefits and significant challenges. Positive outcomes include knowledge development, a transferable research framework, shared resources, personal reward, and a greater understanding of the local environment and community. Challenges identified include balancing diverse interests and priorities, maintaining engagement, managing stakeholder relationships, and limited resources. Lessons learned from the process of integrative collaborative research in Maine can offer guidance on what should be considered when carrying out similar transdisciplinary sustainability science projects in other research contexts

    Evidence of coexistence of change of caged dynamics at Tg and the dynamic transition at Td in solvated proteins

    Full text link
    Mossbauer spectroscopy and neutron scattering measurements on proteins embedded in solvents including water and aqueous mixtures have emphasized the observation of the distinctive temperature dependence of the atomic mean square displacements, , commonly referred to as the dynamic transition at some temperature Td. At low temperatures, increases slowly, but it assume stronger temperature dependence after crossing Td, which depends on the time/frequency resolution of the spectrometer. Various authors have made connection of the dynamics of solvated proteins including the dynamic transition to that of glass-forming substances. Notwithstanding, no connection is made to the similar change of temperature dependence of obtained by quasielastic neutron scattering when crossing the glass transition temperature Tg, generally observed in inorganic, organic and polymeric glass-formers. Evidences are presented to show that such change of the temperature dependence of from neutron scattering at Tg is present in hydrated or solvated proteins, as well as in the solvents used unsurprisingly since the latter is just another organic glass-formers. The obtained by neutron scattering at not so low temperatures has contributions from the dissipation of molecules while caged by the anharmonic intermolecular potential at times before dissolution of cages by the onset of the Johari-Goldstein beta-relaxation. The universal change of at Tg of glass-formers had been rationalized by sensitivity to change in volume and entropy of the beta-relaxation, which is passed onto the dissipation of the caged molecules and its contribution to . The same rationalization applies to hydrated and solvated proteins for the observed change of at Tg.Comment: 28 pages, 10 figures, 1 Tabl

    Maroon Archaeology Beyond the Americas: A View From Kenya

    Get PDF
    Archaeological research on Maroons—that is, runaway slaves—has been largely confined to the Americas. This essay advocates a more global approach. It specifically uses two runaway slave communities in 19th-century coastal Kenya to rethink prominent interpretive themes in the field, including “Africanisms,” Maroons’ connections to indigenous groups, and Maroon group cohesion and identity. This article’s analysis demonstrates that the comparisons enabled by a more globalized perspective benefit the field. Instead of eliding historical and cultural context, these comparisons support the development of more localized and historically specific understandings of individual runaway slave communities both in Kenya and throughout the New World

    Influence of pump laser fluence on ultrafast structural changes in myoglobin

    Get PDF
    High-intensity femtosecond pulses from an X-ray free-electron laser enable pump probe experiments for investigating electronic and nuclear changes during light-induced reactions. On time scales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer. However, all ultra-fast TR-SFX studies to date have employed such high pump laser energies that several photons were nominally absorbed per chromophore. As multiphoton absorption may force the protein response into nonphysiological pathways, it is of great concern whether this experimental approach allows valid inferences to be drawn vis-a-vis biologically relevant single-photon-induced reactions. Here we describe ultrafast pump-probe SFX experiments on photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics) are seen to depend strongly on pump laser energy. Our results confirm both the feasibility and necessity of performing TR-SFX pump probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing design and interpretation of ultrafast TR-SFX pump probe experiments such that biologically relevant insight emerges

    Understanding uptake of continuous quality improvement in Indigenous primary health care: lessons from a multi-site case study of the Audit and Best Practice for Chronic Disease project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experimentation with continuous quality improvement (CQI) processes is well underway in Indigenous Australian primary health care. To date, little research into how health organizations take up, support, and embed these complex innovations is available on which services can draw to inform implementation. In this paper, we examine the practices and processes in the policy and organisational contexts, and aim to explore the ways in which they interact to support and/or hinder services' participation in a large scale Indigenous primary health care CQI program.</p> <p>Methods</p> <p>We took a theory-driven approach, drawing on literature on the theory and effectiveness of CQI systems and the Greenhalgh diffusion of innovation framework. Data included routinely collected regional and service profile data; uptake of tools and progress through the first CQI cycle, and data collected quarterly from hub coordinators on their perceptions of barriers and enablers. A total of 48 interviews were also conducted with key people involved in the development, dissemination, and implementation of the Audit and Best Practice for Chronic Disease (ABCD) project. We compiled the various data, conducted thematic analyses, and developed an in-depth narrative account of the processes of uptake and diffusion into services.</p> <p>Results</p> <p>Uptake of CQI was a complex and messy process that happened in fits and starts, was often characterised by conflicts and tensions, and was iterative, reactive, and transformational. Despite initial enthusiasm, the mixed successes during the first cycle were associated with the interaction of features of the environment, the service, the quality improvement process, and the stakeholders, which operated to produce a set of circumstances that either inhibited or enabled the process of change. Organisations had different levels of capacity to mobilize resources that could shift the balance toward supporting implementation. Different forms of leadership and organisational linkages were critical to success. The Greenhalgh framework provided a useful starting point for investigation, but we believe it is more a descriptive than explanatory model. As such, it has limitations in the extent to which it could assist us in understanding the interactions of the practices and processes that we observed at different levels of the system.</p> <p>Summary</p> <p>Taking up CQI involved engaging multiple stakeholders in new relationships that could support services to construct shared meaning and purpose, operationalise key concepts and tools, and develop and embed new practices into services systems and routines. Promoting quality improvement requires a system approach and organization-wide commitment. At the organization level, a formal high-level mandate, leadership at all levels, and resources to support implementation are needed. At the broader system level, governance arrangements that can fulfil a number of policy objectives related to articulating the linkages between CQI and other aspects of the regulatory, financing, and performance frameworks within the health system would help define a role and vision for quality improvement.</p

    The Crystal Structure and RNA-Binding of an Orthomyxovirus Nucleoprotein

    Get PDF
    Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ,12 nts of RNA, shorter than the 24ヨ28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions

    Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

    Get PDF
    ) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. channels and contribute to cardiac protection against ischemia-reperfusion injury
    corecore