457 research outputs found

    A superconducting transformer system for high current cable testing

    Full text link
    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples

    Oral cancer trends in a single head-and-neck cancer center in the Netherlands; decline in T-stage at the time of admission

    Get PDF
    Objectives: In this study we evaluated the possible epidemiologic changes of oral cancer patients in the Netherlands between the years 1980-1984 and 2000-2004. We specifically studied the differences in male-female ratio, age, TNM-stage, site distribution, and alcohol and tobacco use. Materials and Methods: Patients from the VU University Medical Center with an oral squamous cell carcinoma of the oral cavity registered in 1980-1984 (n=200), group 1, were compared to patients registered in 2000-2004 (n=184), group 2. Trends in prevalence, site distribution, TNM-stage, alcohol and tobacco use, age and gender were studied. Results: The male-female ratio has decreased from 1.8 to 1.2. There were no differences in age between the two groups of patients. The site distribution was similar in both groups. The most commonly involved sites were the tongue and the floor of mouth. In group 2 more patients were diagnosed with a T1 tumour. There were no differences in tobacco use between the two different groups. There were much more light drinkers (0-2 drinks per day) in group 2 than in group 1, whereas there were more heavy drinkers (>4 per day) in group 1 than in group 2 (p<0.001). This was observed in both male and female patients. Conclusion: In our study there were no significant differences between the patients registered in the years 1980-1984 and 2000-2004 regarding the mean age of the patients, site distribution and smoking habits. The male-female ratio has decreased. In the recent group more patients were staged T1N0 and there was a strong decrease of the patients who were heavy drinkers. © Medicina Oral S. L

    A proof-of-concept Bitter-like HTS electromagnet fabricated from a silver-infiltrated (RE)BCO ceramic bulk

    Get PDF
    A novel concept for a compact high-field magnet coil is introduced. This is based on stacking slit annular discs cut from bulk rare-earth barium cuprate ((RE)BCO) ceramic in a Bitter-like architecture. Finite-element modelling shows that a small 20 turn stack (with a total coil volume of &lt;20 cm3) is capable of generating a central bore magnetic field of &gt;2 T at 77 K and &gt;20 T at 30 K. Unlike resistive Bitter magnets, the high-temperature superconducting (HTS) Bitter stack exhibits significant non-linear field behaviour during current ramping, caused by current filling proceeding from the inner radius outwards in each HTS layer. Practical proof-of-concept for this architecture was then demonstrated through fabricating an uninsulated four-turn prototype coil stack and operating this at 77 K. A maximum central field of 0.382 T was measured at 1.2 kA, with an accompanying 6.1 W of internal heat dissipation within the coil. Strong magnetic hysteresis behaviour was observed within the prototype coil, with ≈30% of the maximum central field still remaining trapped 45 min after the current had been removed. The coil was thermally stable during a 15 min hold at 1 kA, and survived thermal cycling to room temperature without noticeable deterioration in performance. A final test-to-destruction of the coil showed that the limiting weak point in the stack was growth-sector boundaries present in the original (RE)BCO bulk

    Crystal size and oxygen segregation for polycrystalline GaN

    No full text
    The grain size for polycrystallineGaN,grown in low-temperature gallium-rich conditions, is shown to be correlated to the oxygen content of the films. Films with lower oxygen content were observed to have larger crystals with an increased tendency to a single-preferred crystal orientation.Elastic recoil detection analysis with heavy ions (i.e., 200 MeV ¹⁹⁷Au ions) was used to determine the composition of the GaN films grown for the study, including the hydrogen, carbon, gallium, nitrogen, and oxygen content. Atomic force microscopy and x-ray diffraction were used to study the sample morphology. From these measurements, the available surface area of the films was found to be sufficient for a significant proportion of the oxygen present in the films to segregate at the grain boundaries. This interpretation is consistent with earlier theoretical studies of the formation and segregation of the VGa-(ON)₃defect complex at dislocation sites in gallium-rich GaN. For this work, however, the defect complex is believed to segregate at the grain boundary of the polycrystallineGaN.The authors would like to acknowledge the support of a U. S. NICOP Contract, No. N00014-99-1-GO17 sponsored through the U. S. Office of Naval Research. One of the authors (K.S.A.B.) would like to further acknowledge the support of a Macquarie University Research Fellowship

    A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis

    Get PDF
    Vascular meristems generate the majority of biomass in higher plants. They constitute a bifacial stem cell population from which xylem and phloem are specified on opposing sides by positional signals. The PHLOEM INTERCALATED WITH XYLEM (PXY) receptor kinase promotes vascular cell division and organisation. However, how these functions are specified and integrated is unknown. Here, a putative PXY-mediated transcriptional regulatory network comprised of 690 transcription factor-promoter interactions was mapped. Among these interactions was a feed-forward loop containing transcription factors WUSCHEL HOMEOBOX RELATED 14 (WOX14) and TARGET OF MONOPTEROS 6 (TMO6), which each regulate the expression of a third transcription factor, LATERAL ORGAN BOUNDARIES DOMAIN 4 (LBD4). PXY signalling in turn regulates the WOX14, TMO6, LBD4 loop to control vascular proliferation. Genetic interaction between LBD4 and PXY suggests that LBD4 marks the phloem-procambium boundary, thus defining the shape of the vascular bundle. These data collectively support a novel mechanism that influences recruitment of cells into the phloem lineage, and defines the role of PXY signalling in this context to the arrangement of vascular tissue

    Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined the effects of the R325W mutation on the three-dimensional (3D) structure of the β-cell-specific Zn<sup>2+ </sup>(zinc) transporter ZnT-8.</p> <p>Methods</p> <p>A model of the C-terminal domain of the human ZnT-8 protein was generated by homology modeling based on the known crystal structure of the <it>Escherichia coli </it>(<it>E. coli</it>) zinc transporter YiiP at 3.8 Å resolution.</p> <p>Results</p> <p>The homodimer ZnT-8 protein structure exists as a Y-shaped architecture with Arg325 located at the ultimate bottom of this motif at approximately 13.5 Å from the transmembrane domain juncture. The C-terminal domain sequences of the human ZnT-8 protein and the <it>E. coli </it>zinc transporter YiiP share 12.3% identical and 39.5% homologous residues resulting in an overall homology of 51.8%. Validation statistics of the homology model showed a reasonable quality of the model. The C-terminal domain exhibited an αββαβ fold with Arg325 as the penultimate N-terminal residue of the α2-helix. The side chains of both Arg325 and Trp325 point away from the interface with the other monomer, whereas the ε-NH<sub>3</sub><sup>+ </sup>group of Arg325 is predicted to form an ionic interaction with the β-COO<sup>- </sup>group of Asp326 as well as Asp295. An amino acid alignment of the β2-α2 C-terminal loop domain revealed a variety of neutral amino acids at position 325 of different ZnT-8 proteins.</p> <p>Conclusions</p> <p>Our validated homology models predict that both Arg325 and Trp325, amino acids with a helix-forming behavior, and penultimate N-terminal residues in the α2-helix of the C-terminal domain, are shielded by the planar surface of the three cytoplasmic β-strands and hence unable to affect the sensing capacity of the C-terminal domain. Moreover, the amino acid residue at position 325 is too far removed from the docking and transporter parts of ZnT-8 to affect their local protein conformations. These data indicate that the inherited R325W abnormality in SLC30A8 may be tolerated and results in adequate zinc transfer to the correct sites in the pancreatic islet cells and are consistent with the observation that the <it>SLC30A8 </it>gene variant R325W has a low predicted value for future type 2 diabetes at population-based level.</p

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    A modular analysis of the Auxin signalling network

    Get PDF
    Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF) and Aux/IAA (IAA) transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants
    corecore