127 research outputs found

    Ruling Out Multi-Order Interference in Quantum Mechanics

    Full text link
    Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule, one of the axioms of quantum mechanics could be violated. Born's rule predicts that quantum interference, as shown by a double slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multi-path, i.e. higher order interferences thus leading to a deviation from the theory. We performed a three slit experiment with photons and bounded the magnitude of three path interference to less than 10-2 of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semi-classical and quantum regimes

    Stiction, Adhesion Energy and the Casimir Effect in Micromechanical Systems

    Get PDF
    We measure the adhesion energy of gold using a micromachined doubly-clamped beam. The stress and stiffness of the beam are characterized by measuring the spectrum of mechanical vibrations and the deflection due to an external force. To determine the adhesion energy we induce stiction between the beam and a nearby surface by capillary forces. Subsequent analysis yields a value γ=0.06\gamma =0.06 J/m2^{2} that is a factor of approximately six smaller than predicted by idealized theory. This discrepancy may be resolved with revised models that include surface roughness and the effect of adsorbed monolayers intervening between the contacting surfaces in these mesoscopic structures.Comment: RevTex, 4 pages, 4 eps figure

    Quantum statistics of atoms in microstructures

    Get PDF
    This paper proposes groove-like potential structures for the observation of quantum information processing by trapped particles. As an illustration the effect of quantum statistics at a 50-50 beam splitter is investigated. For non-interacting particles we regain the results known from photon experiments, but we have found that particle interactions destroy the perfect bosonic correlations. Fermions avoid each other due to the exclusion principle and hence they are far less sensitive to particle interactions. For bosons, the behavior can be explained with simple analytic considerations which predict a certain amount of universality. This is verified by detailed numerical calculations.Comment: 18 pages incl. 13 figure

    Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome.

    Get PDF
    Comparing transcript levels between healthy and diseased individuals allows the identification of differentially expressed genes, which may be causes, consequences or mere correlates of the disease under scrutiny. We propose a method to decompose the observational correlation between gene expression and phenotypes driven by confounders, forward- and reverse causal effects. The bi-directional causal effects between gene expression and complex traits are obtained by Mendelian Randomization integrating summary-level data from GWAS and whole-blood eQTLs. Applying this approach to complex traits reveals that forward effects have negligible contribution. For example, BMI- and triglycerides-gene expression correlation coefficients robustly correlate with trait-to-expression causal effects (r <sub>BMI </sub> = 0.11, P <sub>BMI </sub> = 2.0 × 10 <sup>-51</sup> and r <sub>TG </sub> = 0.13, P <sub>TG </sub> = 1.1 × 10 <sup>-68</sup> ), but not detectably with expression-to-trait effects. Our results demonstrate that studies comparing the transcriptome of diseased and healthy subjects are more prone to reveal disease-induced gene expression changes rather than disease causing ones

    Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC

    Get PDF
    The LHC is well on track toward the discovery or exclusion of a light Standard Model (SM)-like Higgs boson. Such a Higgs has a very small SM width and can easily have large branching fractions to physics beyond the SM, making Higgs decays an excellent opportunity to observe new physics. Decays into collider-invisible particles are particularly interesting as they are theoretically well motivated and relatively clean experimentally. In this work we estimate the potential of the 7 and 8 TeV LHC to observe an invisible Higgs branching fraction. We analyze three channels that can be used to directly study the invisible Higgs branching ratio at the 7 TeV LHC: an invisible Higgs produced in association with (i) a hard jet; (ii) a leptonic Z; and (iii) forward tagging jets. We find that the last channel, where the Higgs is produced via weak boson fusion, is the most sensitive, allowing branching fractions as small as 40% to be probed at 20 inverse fb for masses in the range between 120 and 170 GeV, including in particular the interesting region around 125 GeV. We provide an estimate of the 8 TeV LHC sensitivity to an invisibly-decaying Higgs produced via weak boson fusion and find that the reach is comparable to but not better than the reach at the 7 TeV LHC. We further estimate the discovery potential at the 8 TeV LHC for cases where the Higgs has substantial branching fractions to both visible and invisible final states.Comment: 23 pages, 7 figures. v2: version published in JHEP. 8 TeV analysis adde

    Entangled state quantum cryptography: Eavesdropping on the Ekert protocol

    Get PDF
    Using polarization-entangled photons from spontaneous parametric downconversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum non-demolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability.Comment: 4 pages, 2 encapsulated postscript files, PRL (tentatively) accepte

    Exploring the Higgs Portal with 10/fb at the LHC

    Full text link
    We consider the impact of new exotic colored and/or charged matter interacting through the Higgs portal on Standard Model Higgs boson searches at the LHC. Such Higgs portal couplings can induce shifts in the effective Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs production and decay patterns. We consider two possible interpretations of the current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which is underproduced due to the suppression of its gluon fusion production cross section. We first perform a model independent analysis of the allowed sizes of such shifts in light of the current LHC data. As a class of possible candidates for new physics which gives rise to such shifts, we investigate the effects of new scalar multiplets charged under the Standard Model gauge symmetries. We determine the scalar parameter space that is allowed by current LHC Higgs searches, and compare with complementary LHC searches that are sensitive to the direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form factor, numerical results updated with Moriond 2012 data, conclusions unchange

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic
    corecore