The LHC is well on track toward the discovery or exclusion of a light
Standard Model (SM)-like Higgs boson. Such a Higgs has a very small SM width
and can easily have large branching fractions to physics beyond the SM, making
Higgs decays an excellent opportunity to observe new physics. Decays into
collider-invisible particles are particularly interesting as they are
theoretically well motivated and relatively clean experimentally. In this work
we estimate the potential of the 7 and 8 TeV LHC to observe an invisible Higgs
branching fraction. We analyze three channels that can be used to directly
study the invisible Higgs branching ratio at the 7 TeV LHC: an invisible Higgs
produced in association with (i) a hard jet; (ii) a leptonic Z; and (iii)
forward tagging jets. We find that the last channel, where the Higgs is
produced via weak boson fusion, is the most sensitive, allowing branching
fractions as small as 40% to be probed at 20 inverse fb for masses in the range
between 120 and 170 GeV, including in particular the interesting region around
125 GeV. We provide an estimate of the 8 TeV LHC sensitivity to an
invisibly-decaying Higgs produced via weak boson fusion and find that the reach
is comparable to but not better than the reach at the 7 TeV LHC. We further
estimate the discovery potential at the 8 TeV LHC for cases where the Higgs has
substantial branching fractions to both visible and invisible final states.Comment: 23 pages, 7 figures. v2: version published in JHEP. 8 TeV analysis
adde