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Differentially expressed genes reflect disease-
induced rather than disease-causing changes in the
transcriptome
Eleonora Porcu 1,2,3✉, Marie C. Sadler 2,3, Kaido Lepik4,5, Chiara Auwerx 1,2,3, Andrew R. Wood 6,

Antoine Weihs 7, Maroun S. Bou Sleiman8, Diogo M. Ribeiro 2,9, Stefania Bandinelli10, Toshiko Tanaka11,

Matthias Nauck 12,13, Uwe Völker 13,14, Olivier Delaneau 2,9, Andres Metspalu 15,

Alexander Teumer 13,16, Timothy Frayling 17, Federico A. Santoni18, Alexandre Reymond1 &

Zoltán Kutalik 2,3,6,9

Comparing transcript levels between healthy and diseased individuals allows the identifica-

tion of differentially expressed genes, which may be causes, consequences or mere correlates

of the disease under scrutiny. We propose a method to decompose the observational cor-

relation between gene expression and phenotypes driven by confounders, forward- and

reverse causal effects. The bi-directional causal effects between gene expression and com-

plex traits are obtained by Mendelian Randomization integrating summary-level data from

GWAS and whole-blood eQTLs. Applying this approach to complex traits reveals that for-

ward effects have negligible contribution. For example, BMI- and triglycerides-gene expres-

sion correlation coefficients robustly correlate with trait-to-expression causal effects

(rBMI= 0.11, PBMI= 2.0 × 10−51 and rTG= 0.13, PTG= 1.1 × 10−68), but not detectably with

expression-to-trait effects. Our results demonstrate that studies comparing the tran-

scriptome of diseased and healthy subjects are more prone to reveal disease-induced gene

expression changes rather than disease causing ones.
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To unravel the genetics of complex diseases and traits cau-
ses, multiple approaches have concentrated on contrasting
the expression of mRNA transcripts in two different

groups of samples to understand how genes are expressed in
health and disease1–4. This allows identifying differentially
expressed genes (DEGs) that can be used to obtain mechanistic
insights from diseases or serve as clinical biomarkers for early
diagnostics. However, DEG analyses are unable to distinguish
between causes, consequences, or mere correlations between gene
expression and phenotypes. To understand the contributions to
observed trait-expression correlations, both the assessment of
bidirectional causal effects and the impact of (unmeasured)
confounders are needed. We argue that if the observed correla-
tions and bidirectional causal effects are estimated, the con-
tribution of such confounders can be evaluated.

Genome-wide association studies (GWAS) identified thousands
of common genetic variants associated with complex human
traits5 and studies on expression quantitative trait loci (eQTLs)
showed how genetic variants contribute to the regulation of gene
expression levels6. The overlay of the two methodologies showed
that trait-associated SNPs are three times more likely to be
eQTLs7–10, suggesting that gene expression is a reliable inter-
mediary between DNA variation and higher-order complex phe-
notypes. Starting from this hypothesis, many statistical approaches
integrating GWAS and eQTLs summary statistics have been
proposed to detect these overlapping associations9,11,12. However,
while these studies aim to identify genes whose (genetically
determined) expression is significantly associated with complex
traits, they do not aim to estimate the strength of the causal effect
and are unable to distinguish causation from pleiotropy (i.e., when
a genetic variant independently affects gene expression and phe-
notype). This challenge can be addressed by combining summary-
level data from eQTL and GWAS studies in a two-sample Men-
delian Randomization framework13 to evaluate whether gene
expression has a causal influence on a complex trait. Such
methods successfully identified thousands of genes associated with
complex traits.

Yet, these transcriptome-wide approaches only use cis-eQTLs
as instruments to tease out the causal effect of gene expression on
a complex trait even though the variation in gene expression may
be secondary to, rather than causal for, the disease process
(“reverse causation”). Disease-associated genetic variants affect
expression levels more often in trans than in cis14. Hence, poly-
genic risk scores (PRS) have been used to evaluate the association
between genetically predicted complex traits and gene expression
levels14. However, PRS-based approaches are prone to detect
associations merely due to pleiotropic SNPs.

In this work, to circumvent this issue and elucidate the impact
of diseases on the transcriptome program at a large scale and in a
principled way, we propose a reverse transcriptome-wide Men-
delian randomization approach (revTWMR), which integrates
summary-level data from GWAS and trans-eQTLs studies in an
MR framework to estimate the causal effect of phenotypes on gene
expression. By combining revTWMR results with the causal effects

of gene expression on phenotypes—estimated by transcriptome-
wide Mendelian randomization (TWMR)15—we obtain a clear
picture of the bidirectional causal effects between gene expression
and complex traits (Fig. 1) and evaluate their contribution to their
observational correlation.

Results
Overview of the approach. We recently developed a
transcriptome-wide summary statistics-based Mendelian rando-
mization approach (TWMR15) integrating summary-level data
from GWAS and cis-eQTL studies. Applying TWMR to summary
data from whole blood cis-eQTL meta-analyses from >32,000
individuals (eQTLGen Consortium14) and publicly available
GWAS summary statistics revealed an atlas of putative func-
tionally relevant genes for several complex human traits15. This
approach can be reversed to design a multi-instrument MR
approach to estimate the causal effect of a phenotype (exposure)
on gene expression (outcome) (revTWMR, Fig. 1). For each gene,
using the inverse-variance weighted meta-analysis of ratio esti-
mates from summary statistics16, we estimate the causal effect of a
phenotype on the expression of the probed gene as

α̂ ¼
∑
N

j¼1
βjγj

∑
N

j¼1
β2j

ð1Þ

where βj and γj are the standardized effect sizes of SNPj on the
phenotype and on the expression level of the probed gene,
respectively, and N is the number of independent SNPs used as
instrumental variables.

Applying revTWMR to GWAS and eQTL summary statistics.
We applied revTWMR to assess causal associations between 12
complex traits—body mass index (BMI), Crohn’s disease (CD),
educational attainment (EDU), fasting glucose (FG), high-density
lipoprotein (HDL), height, low-density lipoprotein (LDL), rheu-
matoid arthritis (RA), schizophrenia (SCZ), total cholesterol
(TC), triglycerides (TG), and waist-to-hip ratio adjusted for BMI
(WHRadjBMI)—and the expression of 19,942 genes. We com-
bined summary whole blood trans-eQTLs data from the eQTL-
Gen Consortium14, with large publicly available GWAS for the
traits of interest17–22 (see Methods). Together, we identified 46
genes significantly affected by at least one phenotype
(PrevTWMR < 2.5 × 10−6= 0.05/19,942), often corroborating
known biological associations (Supplementary Data 1). In par-
allel, we performed TWMR analyses on the same set of traits,
allowing testing for the presence of bidirectional effects (see
Methods) (Supplementary Data 2).

The most influential traits in our analysis were TG and RA,
significantly influencing the expression of 26 and 15 genes,
respectively. These were analyzed for functional enrichment with
UniProtKB23, KEGG pathway24, Gene Ontology25, and
InterPro26. For TG, cholesterol metabolism (UniProt KW-0153)

Fig. 1 TWMR and revTWMR. Schematic representation of how TWMR and revTWMR dissect bidirectional causal and confounder contributions to the
observed correlation between gene expression and phenotype.
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was the most significantly enriched class (Supplementary Data 3).
For RA, immunoglobulin-related terms (InterPro IPR013106,
IPR007110, and IPR013783) were the top significantly enriched
classes (Supplementary Data 4). Closer investigation revealed that
this enrichment is due to the presence of 7 T-cell receptor α and β
variable genes (TRAV and TRBV). Interestingly, a bias in Vβ gene
utilization by T cells in patients suffering from RA was
reported27.

Focusing on serum lipid levels (Supplementary Data 5),
revTWMR revealed that in addition to the 26 genes affected by
TG, the expression of eight genes is altered by HDL-cholesterol
levels. In line with the commonly observed negative correlation
between HDL and TG28, five genes were impacted by both traits
with an opposite direction of the causal effect (Supplementary
Data 1). Regarding the impact of high HDL levels, we found that it
reduced the expression of squalene synthase (FDFT1; αrevTWMR=
−0.14, PrevTWMR= 1.3 × 10−10, Supplementary Fig. 1), a key
enzyme of the cholesterol biosynthesis pathway29. Interestingly,
serum levels of squalene, the product of squalene synthase were
found to negatively correlate with HDL-cholesterol30. Genes
involved in cholesterol transport were impacted too: high HDL
negatively impacted the expression of the LDL receptor (LDLR;
αrevTWMR=−0.11, PrevTWMR= 1.0 × 10−06, Supplementary Fig. 1),
while having a positive impact on MYLIP (also known as IDOL;
αrevTWMR= 0.18, PrevTWMR= 2.2 × 10−16, Supplementary Fig. 1), a
ubiquitin ligase that induces degradation of the LDL receptor31. In
parallel, HDL increased the expression of the ABCA1 (αrevTWMR=
0.24, PrevTWMR= 9.5 × 10−29, Supplementary Fig. 1) and ABCG1
(αrevTWMR= 0.19, PrevTWMR= 4.1 × 10−20, Supplementary Fig. 1),
two transporters responsible for cholesterol efflux from
macrophages32. While we did not observe a significant effect of
ABCA1 on HDL and TC levels through TWMR, an association
between ABCA1 and these two traits was previously reported by a
GWAS33, suggesting a complex regulatory mechanism. Together,
these results are reminiscent of the well-described negative feedback
mechanisms that tightly control cholesterol biosynthesis and
uptake34.

As the other traits influenced only a smaller number of genes,
no further significant enrichments were found. Nevertheless, a
gene-by-gene investigation revealed many known or highly
plausible associations, such as the significant effect of BMI on
ALDH1A1 (αrevTWMR=−0.17, PrevTWMR= 2.2 × 10−06, Supple-
mentary Fig. 1), an enzyme that converts retinaldehyde to retinoic
acid35. Retinoids have long been implicated in adipogenesis36,37

and ALDH1A1 expression in visceral adipose tissue was shown to
positively correlate with BMI38.

Despite strong indications of functional relevance, most
revTWMR-implicated genes fall into genomic regions completely
missed by GWAS, as is illustrated by the fact that revTWMR p
values are completely uncorrelated (r < 0.05) with those obtained by
classical gene-based GWAS test performed using PASCAL39 (See
Methods; Supplementary Fig. 2). In line with this observation, only
one out of the 46 revTWMR-identified genes were significant for
TWMR: FDFT1 shows a negative causal feedback loop between its
expression and TG (αTWMR=−0.04, PTWMR= 1.6 × 10−31 and
αrevTWMR= 0.15, PrevTWMR= 1.3 × 10−09, Supplementary Fig. 1).

To test the robustness of revTWMR, we performed MR
analysis using two alternative approaches allowing the presence of
invalid instruments: a weighted median method that assumes that
a majority of genetic variants are valid instruments40 and a
weighted mode-based estimation method that assumes a plurality
of genetic variants are valid instruments41. Results strongly
supported the robustness of the IVW-based findings as 47 out of
the 51 trait-gene revTWMR associations were significant in at
least one of these methods (PMR < 0.05/51; Supplementary
Data 6). This analysis revealed 32 additional genes significantly

affected by RA (30 genes), TC (1), and TG (1) (Supplementary
Data 7). Of note, the additional 30 genes associated with RA,
strengthened the previously detected enrichment for the immu-
noglobulin InterPro functional groups (Supplementary Data 8).

Pleiotropic SNPs lead to biased causal effect estimates. The
validity of revTWMR, as any MR approach, relies on three
assumptions about the instruments: (i) they must be sufficiently
strongly associated with the exposure; (ii) they should not be
associated with any confounder of the exposure-outcome rela-
tionship; and (iii) they should be associated with the outcome
only through the exposure. The third assumption is crucial as MR
causal estimates will be biased in the presence of pleiotropy42,43.
Accordingly, revTWMR assumes that all genetic variants used as
instrumental variables affect the gene expression only through the
phenotype under scrutiny and not through independent biolo-
gical pathways.

To test for the presence of pleiotropy, we used a similar
approach to MR-PRESSO global test43,44, performing Cochran’s
Q test. Under the assumption that the majority of SNPs influence
gene expression only through the phenotype tested in the model,
SNPs violating the third MR assumption would significantly
increase the Cochran’s heterogeneity Q statistic (see Methods),
allowing their detection and exclusion. This was the case for 16 of
the 52 originally significant trait → gene associations. Out of
these 16 associations, nine passed the heterogeneity test after
removing pleiotropic SNPs from the instrumental variables.
Moreover, this procedure led to the identification of six additional
associations initially masked by heterogeneity, bringing the final
number of robust associations to 51 (Supplementary Data 1).
Importantly, revTWMR, like other MR methods, discriminates
likely causal effects from pleiotropy, as illustrated by the example
of STX1B, a gene that was found to be associated with EDU
through a PRS approach (PPRS= 1.3 × 10−20)14. Applying
revTWMR, we did not observe an association between EDU
and STX1B (αrevTWMR= 0.03, PrevTWMR= 0.83) and detected a
highly pleiotropic variant, rs2456973, strongly associated with
hematological and anthropometric traits45 (Supplementary Data 9
and Supplementary Fig. 3).

Trait correlation. Exploring the shared effect of complex traits and
diseases on transcriptional programs can provide useful etiological
insights. Hence, for every phenotype-pair (Pi, Pj we computed the
gene expression perturbation correlation between the respective
causal effect estimates of each phenotype on the gene expression
(ρ̂Pði;jÞ ¼ corrðαPi!E; αPj!EÞ) across a subset of 2974 independent
genes across the genome15. Among the 55 pairs of traits, we found
21 significant correlations (FDR <1%). We compared these results
with the genetic correlation (ρ̂G) between traits estimated by LD
score regression46 and found a remarkable concordance between
the two estimates (r= 0.84). On average, ρ̂P represents 56% of ρ̂G.
Although ρ̂G having smaller variance may explain part of this
attenuation, we think that the main reason behind this observation
is that only a part of ρ̂G translates into consequences on gene
expression level in whole blood (Supplementary Fig. 4). In parti-
cular, nine pairs of traits showed significance for both ρ̂P and ρ̂G,
whereas 12 were significant only for ρ̂P , and seven only for ρ̂G.
Among the significant correlations not identified by LD score
regression ρ̂G, we found that HDL and LDL are negatively corre-
lated (ρ̂P =−0.13, FDR= 3.1 × 10−09) and that RA positively
correlated with several traits: CD (ρ̂P = 0.08, FDR= 4.0 × 10−04),
SCZ (ρ̂P = 0.14, FDR= 1.5 × 10−10), height (ρ̂P = 0.09, FDR=
6.0 × 10−05), TC (ρ̂P = 0.08, FDR= 4.0 × 10−04), and TG
(ρ̂P = 0.12, FDR= 4.8 × 10−08) (Supplementary Data 10).
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Partitioning the observational correlation. As a proof-of-con-
cept, we asked how highly revTWMR-identified causal genes
would rank in a DEG analysis. To address this question, we
collected the observational correlation estimates between whole
blood gene expression levels and the quantitative traits in three
independent European cohorts (EGCUT (N= 488), InChianti
(N= 609), and SHIP-Trend (N= 991)).

Correlating revTWMR effects to observational correlations
(equivalent to DEG analysis), we found a significant agreement
for all the traits (Table 1). We reestimated these correlations
accounting for the error in the compared estimates (regression
dilution bias) (see Methods). No significant correlation between
observational correlations and the causal effects of the gene
expression on phenotypes estimated by TWMR was observed
(Table 1). Of note, when we correlated the P values of the
observational correlations with those obtained by conventional
gene-based tests using GWAS results, we detected a significant
concordance only for HDL (r= 0.05, P= 1.3 × 10−10) and TG
(r= 0.03, P= 5.7 × 10−04) (Supplementary Data 11).

As we previously showed that causal feedback loops are rare
(i.e., αTWMR * αrevTWMR= 0), the observational correlation (r) can
be approximated as the sum of the bidirectional effects estimated
by TWMR and revTWMR plus the contribution of the

confounding factors (see Methods). Hence, we calculated the
proportion of correlation due to confounders. For each gene we
calculated the contribution of TWMR and revTWMR as αTWMR

r
and αrevTWMR

r , respectively. Consequently, the contribution of
confounders is 1� αTWMR

r � αrevTWMR
r . In each correlation bin (Fig. 2)

we combined such contributions using inverse-variance meta-
analysis and revealed that the observed correlation between gene
expression and phenotype is mainly driven by confounders. For
example, for genes correlated (|r | >0.1) with BMI, 83%
(P < 5.0 × 10−324) of the correlation is due to the confounders,
17% (P= 6.7 × 10−45) to the effect of BMI on gene expression
and 0% (P= 0.67) to the forward effect (Fig. 2 and Supplemen-
tary Data 12). A similar scenario was observed for TG: 90%
(P < 5.0 × 10−324) of the correlation is due to confounders and
only 10% (P= 2.9 × 10−35) and 0% (P= 0.98) are due to reverse
and forward effect of the gene expression on TG, respectively. For
HDL we observed a stronger effect due to confounders (94%,
P < 5.0 × 10−324) and a mild reverse effect (6%, P= 3.9 × 10−15)
(Fig. 2).

Genes affected by lipid traits are linked to drug targets. It is
important to note that since GWAS findings point to loci
underlying disease susceptibility, changes in expression detected
by revTWMR do not necessarily represent the consequence of the
disease but can also reflect the consequences of a genetic pre-
disposition to that disease. Therefore, identified genes might
represent early biomarkers of disease (predisposition) and mod-
ulation of their expression could be a promising therapeutical
strategy. For this reason, we assessed whether the protein pro-
ducts of the transcripts identified by our revTWMR analysis are
targets of drugs used to treat the disease in question. We started
by defining a set of drugs relevant to the traits under investigation
according to DrugBank13. Next, we retrieved high confidence
interactions (confidence score >0.7) involving these drugs, from
STITCH, a manually curated database of predicted and experi-
mental chemical–protein interactions12. We then searched for
proteins that were (a) identified as dysregulated by revTWMR
and (b) targeted by a drug indicated for the treatment of a
given trait.

The gene product of 4 out of the 8 genes detected by
revTWMR for HDL-cholesterol met these criteria: phospholipid-
transporting ATPase ABCA1 (ABCA1), squalene synthase
(FDFT1), low-density lipoprotein receptor (LDLR), and sterol
regulatory element-binding protein 1 (SREBF1) which interact
with atorvastatin, lovastatin, pravastatin, and simvastatin. We

Table 1 Correlation between observational phenotype-gene
expression correlation and revTWMR and TWMR effects.

Trait revTWMR TWMR

correlation
(adjusted)

P value correlation P value

BMI 0.11 (0.37) 1.97E-51 0 0.75
EDU 0.04 (0.29) 1.50E-08 0.02 0.04
Fasting
glucose

0.08 (0.24) 2.56E-17 0.01 0.40

HDL 0.10 (0.27) 1.86E-43 0.01 0.18
height 0.09 (0.38) 3.26E-37 0.01 0.33
LDL 0.02 (0.09) 5.36E-04 0.02 0.05
TC 0.04 (0.13) 5.30E-08 0.03 0.01
TG 0.13 (0.32) 1.11E-68 0 0.73
WHR 0.02 (0.14) 1.74E-04 0.01 0.40

For each phenotype available in at least two cohorts, we calculated the correlation between the
observational correlation estimates and the revTWMR and TWMR effects. The P value indicates
the significance of the correlation coefficient calculated using a two-sided t-test. For significant
correlations, we computed the adjusted correlation correcting for regression dilution bias.

Fig. 2 Partitioning the gene expression-trait observational correlation for BMI, HDL, and triglycerides. Using all the genes tested by TWMR and
revTWMR (N= 10,395 for BMI, N= 10,391 for HDL, and N= 10,390 for TG), for each bin of correlation (absolute value) we plotted the combined
contributions of the forward (TWMR, blue dots) and reverse (revTWMR, red dots) effect of the gene expression on the trait, the contribution of
confounders (black dots). Data were presented as estimated contributions and 95% confidence intervals.
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found that ABCA1, FDFT1, and SREBF1 are also dysregulated by
high triglyceride levels. We did not find drug targets among the
genes significantly dysregulated by RA (Supplementary Data 13).

Tissue-specific effects. Many traits and diseases manifest them-
selves only in certain tissues. For this reason, we performed
tissue-specific revTWMR analyses using tissue-specific trans-
eQTLs identified by the Genotype-Tissue Expression Project
(GTEx)47, which provides a unified view of genetic effects on gene
expression across 49 human tissues. We tested the 51 previously
identified significant trait → gene associations found in whole
blood and detected three genes showing tissue-specific associa-
tions (PrevTWMR < 0.05/51, Supplementary Data 14). These
include a negative effect of RA on MYO1B in the kidney cortex
(αrevTWMR=−1.71, PrevTWMR= 2.4 × 10−04), as well as a positive
effect on TRBV19 in the small intestine terminal ileum
(αrevTWMR= 1.14, PrevTWMR= 1.7 × 10−04) and in esophagus
mucosa (αrevTWMR= 0.63, PrevTWMR= 5.7 × 10−04). In addition,
we observed a negative effect of HDL on MYLIP (αrevTWMR=
−0.98, PrevTWMR= 5.9 × 10−04) in the brain spinal cord
(cervical c-1).

Testing the reverse causal effects in mouse models. RevTWMR
pointed to 26 genes affected by TG levels. To experimentally
validate these causal effects, we analyzed how the hepatic
expression of these genes and TG levels were co-affected in the
mouse BXD genetic reference panel, a set of inbred mice strains
generated by crossing the C57BL/6 J and DBA/2 strains, upon
switch to a high-fat diet (HFD)48. We hypothesized that if HFD-
induced changes in TG correlate with HFD-induced changes in
the expression of these genes, then diet-induced changes in TG
might indeed be causal to changes in the expression of selected
genes. Importantly, this relies on the assumption that there is a
reasonable correlation between the expression of these genes in
human blood and mice livers and that TG → gene expression
mechanisms are conserved between the two species. Among the
19,942 genes tested in revTWMR, 10,841 had a detectable
ortholog measured in the mouse samples. For each gene, we
computed the Spearman correlation between HFD-induced
expression fold change and the diet-induced TG differences as
an indicator of genes perturbed by TG levels. Among the genes
showing a significant (P < 0.001) correlation, we found an
enrichment (PFisher= 4.0 × 10−04) of revTWMR genes
(PrevTWMR < 2.5 × 10−06). Performing the same analysis on sig-
nificant TWMR genes (PTWMR < 3 × 10−06) did not yield an
enrichment (PFisher= 0.7), confirming that correlations are
mainly driven by the effect of TG on gene expression (Supple-
mentary Data 15).

Discussion
We presented a Mendelian randomization approach to study the
impact of human phenotypes on the transcriptome. When cal-
culating the reverse effect of phenotypes on gene expression it is
important to note that findings from GWAS provide a measure of
the genetic liability to develop a disease. In fact, using such
genetic liability as exposure, the association with the gene
expression does not necessarily reflect the consequence of the
fully developed disease but might reflect a consequence of an
early asymptomatic stage of the disease or a mere genetic
predisposition49. Hence, these changes in the expression of
revTWMR-implicated genes may occur before the disease man-
ifest itself. As such, revTWMR results should not exclusively
interpreted as markers of downstream mechanisms post-disease
onset, but as potential early biomarkers.

Across the 46 genes identified by revTWMR, we observed a
clear trend for functional relevance. Genes perturbed by complex
diseases seem to confirm several previously reported associations
between immune-related genes (TRBV) and RA27. In addition,
revTWMR allowed gaining insight into the regulatory mechan-
isms controlling biological pathways, as illustrated with serum
lipid levels. We observed that high HDL-cholesterol lowers the
expression of genes involved in cholesterol biosynthesis (FDFT1)
and cellular cholesterol uptake (LDLR), while it increases the
expression of genes responsible for the degradation of LDLR
(MYLIP) and cholesterol efflux (ABCA1 and ABCG1). Together,
this suggests that high HDL levels prevent intracellular choles-
terol overload, which could explain its known cardioprotective
effects50. However, TG levels, which were shown to indepen-
dently increase risk of coronary artery disease (CAD)51, impact
the expression of the same genes in the opposite direction.
Hence, high TG levels might increase CAD risk through an
intracellular accumulation of cholesterol. The biological rele-
vance of our findings is further supported by our drug target
analysis, which found that four genes (SREBF1, FDFT1, LDLR,
and ABCA1) whose expression was perturbed by serum lipid
traits were targets of statins, a category of drugs aiming at reg-
ulating the very same traits. Lipids are major modulators of CAD
risk50,51 and established regulators of gene expression52. Hence,
drugs targeting these downstream genes might modulate CAD
risk, even though mediation analysis is warranted to support this
hypothesis.

Combining results of DEG analysis and bidirectional TWMR
allowed decomposing the observational correlation between
whole blood gene expression and complex traits. This analysis
showed that DEGs often reflect disease-induced changes in the
transcriptome rather than disease-causing ones. Importantly, we
observed that most of the correlation between gene expression
and complex traits is due to confounders, which could partially be
explained by age and sex being important determinants of both.
The remaining correlation can almost entirely be explained by the
trait-to-gene expression causal effects. Just like single SNPs, the
individual expression of most genes has only a minute con-
tribution to the phenotype, even if cumulatively their effect can be
substantial. Diseases, however, represent a major burden for the
organism, which can lead to drastic changes in the transcriptome
program. In light of these considerations, one would expect that
the correlation between a gene’s expression level and a complex
trait is reflecting disease status rather than an expression-to-trait
link. Validating revTWMR requires large cohorts in which gene
expression is measured before and after trait-modifying inter-
ventions. As conducting such studies in humans imposes serious
logistic and ethical hurdles, we turned to mice studies to assess
the impact of diet-induced changes in TG on gene expression and
found that genes detected by TG-revTWMR are enriched among
mouse orthologs whose HFD-induced changes in expression
correlate with HFD-induced changes in TG.

Our approach has its limitations, which need to be considered
when interpreting results. First, our results are mainly focused on
gene expression levels in whole blood. This is primarily due to the
reduced power resulting from the small sample sizes when con-
ducting tissue-specific analyses. However, because gene regulation
is tissue-specific and many diseases manifest themselves only in
certain tissues, future possibilities to interrogate larger and more
diverse tissue-specific trans-eQTL datasets could unravel causa-
tive disease-gene links for genes not differentially expressed in
blood. This speculation is supported both by the fact that the
effect sizes of the few tissue-specific associations we detected were
more than fivefold larger than those estimated using whole blood
data, as well as recent reports suggesting that trans-eQTLs are
particularly cell type-specific53.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25805-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5647 | https://doi.org/10.1038/s41467-021-25805-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Another caveat lies in the fact that differences in power makes
it difficult to compare the results of TWMR and revTWMR. One
of the most important determinants of statistical power for MR is
the sample size available for the outcome, thus revTWMR is less
powered, picking up mostly strong effects. Still, another factor
influencing power is the number and strength of instruments.
Hence, TWMR results will be more accurate once larger eQTL
datasets become available, which will in turn increase the number
of testable genes (currently 16 K). Finally, as with every MR
approach, revTWMR is at risk of violating the MR assumptions.
In particular, horizontal pleiotropy and indirect effects of the
instruments on the exposures can substantially bias causal effect
estimates. RevTWMR assumes that the top GWAS SNPs have a
direct effect on the phenotype. In particular, correlated pleiotropy
can lead to biased causal effect estimates and currently available
methods that attempt to tackle such MR violations (e.g.,
CAUSE54, LHC-MR55, MR-APSS56) require genome-wide sum-
mary statistics, which is not yet available for transcripts in a large
enough sample size. However, many SNPs show indirect or
pleiotropic effects. We, therefore, mitigate the influence of these
potential biases by excluding pleiotropic SNPs failing the het-
erogeneity test. Further gain in robustness should be obtained by
integrating additional phenotypes as exposures through which
instruments may act, as accounting for pleiotropy is a better
approach than excluding violating instruments. Such a multi-
phenotype revTWMR approach will be possible only once
genome-wide trans-eQTLs summary statistics will become
available.

A very exciting perspective is that revTWMR can theoretically
be extended to other types of omics data, e.g., integrating
methylomics data, as alterations in DNA methylation are more
often the consequence rather than the cause of diseases57. One
could apply the approach to protein levels (revPWMR) to gain
further insights into the effects of complex traits on biomarkers
but the sample size of proteomics datasets are currently too small.

In conclusion, our bidirectional analysis disentangles the causes
and consequences of gene expression for complex traits and
reveals that complex traits have a more pronounced impact on
gene expression than the reverse. Therefore, studies comparing
gene expression levels of diseased and healthy subjects may still
point to useful biomarkers of disease predisposition or severity,
but interventions that restore levels of the biomarker to normal
levels will not necessarily be disease-modifying.

Methods
Reverse transcriptome-wide Mendelian randomization (revTWMR).
RevTWMR is a multi-instrument MR approach designed to estimate the causal
effect of the phenotypes (exposure) on gene expression (outcome). For each gene,
using an inverse-variance weighted method for summary statistics16, we define the
joint causal effect of the phenotypes on the outcome as

α̂ ¼ β̂
0
C�1β̂

� ��1
β̂
0
C�1γ̂

� �
ð2Þ

Here β is an n-vector that contains the standardized effect size of n independent
SNPs on the phenotype, derived from GWAS. γ is a vector of length n that contains
the standardized effect size, in trans-, of each SNP on the gene expression. C is the
pair-wise LD matrix between the n SNPs.

As instrumental variables, we used independent (r2 < 0.01) significant
(PGWAS < 5 × 10−08) SNPs chosen among the 10 K preselected trait-associated
SNPs included in a trans-eQTL dataset from eQTLGen Consortium (31,684 whole
blood samples). As we are using only strongly independent SNPs, we use the
identity matrix to approximate C. The SNPs with larger effects on the outcome
than on the exposure were removed, as these would indicate a violation of MR
assumptions (likely reverse causality and/or confounding).

The variance of α can be calculated approximately by the Delta method

var α̂ð Þ ¼ ∂α̂

∂β

� �2

� var β̂
� �

þ ∂α̂

∂γ

� �2

� var γ̂
� �þ ∂α̂

∂β

� �
� ∂α̂

∂γ

� �
� covðβ̂; γ̂Þ ð3Þ

where cov(β,γ) is 0 if β and γ are estimated from independent samples. We defined
the causal effect Z-statistic for gene i as α̂i=SEðα̂iÞ, where SE α̂i

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var α̂ð Þi;i

p
.

We applied revTWMR across the human genome for a causal association
between a set of 12 phenotypes and the expression levels of 19,942 genes using
summary statistics from GWAS and eQTLs studies. The analysed traits include
BMI, CD17, EDU20, FG18, HDL-cholesterol, height, LDL-cholesterol, RA19, SCZ21,
TC, TG, and WHRadjBMI. While for CD, EDU, FG, RA, SCZ, and WHRadjBMI
summary statistics (estimated univariate effect size and standard error) originate
from the most recent meta-analysis and were downloaded from the publicly
available NIH Genome-wide Repository of Associations Between SNPs and
Phenotypes (https://grasp.nhlbi.nih.gov/), for the other traits the GWAS were
performed in UKBiobank and the summary statistics are from the Neale Lab
(http://www.nealelab.is/uk-biobank/) (Supplementary Data 16). We only used
SNPs on autosomal chromosomes and were available in the UK10K reference
panel, which allowed estimating the LD among these SNPs and prune them. Strand
ambiguous SNPs were removed.

Heterogeneity test. The validity of all MR approaches, such as revTWMR, relies
on three assumptions. The third assumption (no pleiotropy) is crucial as MR causal
estimates will be biased if the genetic variants (IVs) have pleiotropic effects43.
Hence, revTWMR assumes that all genetic variants used as instrumental variables
affect the outcome only through gene expression and not through independent
biological pathways. To test for the presence of pleiotropy, we used Cochran’s Q
test42,44. In brief, we tested whether there is a significant difference between the
revTWMR-effect of an instrument (i.e., αβi) and the estimated effect of that
instrument on the gene expression (γi). We defined

di ¼ γ̂i � α̂β̂i ð4Þ
and its variance as

var di
� � ¼ var γ̂i

� �þ βi
� �2 � var α̂ð Þ þ var γ̂i

� � � αð Þ2 þ var β̂i

� �
� var α̂ð Þ ð5Þ

Next, we tested the deviation of each SNP using the following test statistic

Ti ¼
d2i

varðdiÞ
� χ21 ð6Þ

In case where P < 1 × 10−4, we removed the SNP with largest |di| and then
repeated the test.

Transcriptome-wide Mendelian randomization (TWMR). In order to test the
presence of a feedback loop of association, we ran TWMR15 for all the significant
revTWMR genes. To make TWMR and revTWMR results comparable, we ran a
univariable TWMR where for each gene we estimated its total effect on the phe-
notype. The associations between the instrumental variables and the exposure
(gene expression) and the outcome (complex traits) are estimated from the same
studies used for revTWMR.

Gene-based test. To compare GWAS and revTWMR results, we performed gene-
based test for association summary statistics using PASCAL39. PASCAL assesses
the total contribution of all SNP within close physical proximity to a given gene by
combining SNP association Z-statistics into gene-based P values while accounting
for local LD structure.

Replication cohorts

EGCUT
Study population. The Estonian Genome Center, University of Tartu (EGCUT)
cohort denotes the Estonian Biobank sample of more than 200,000 individuals or
about 20% of the Estonian adult population. All Biobank participants have been
genotyped and linked to electronic health records (EHR) of the Health Insurance
Fund, national registries, and major hospitals. The EHR linkage captures the
participants’medical history together with demographics, lifestyle information, and
laboratory measurements; additional information is provided by self-completed
questionnaires. Disease diagnoses are in the form of ICD-10 codes. RNA-seq data
is available on 491 unrelated individuals. All Biobank participants have signed a
broad informed consent to allow using their genetic and medical information for
research purposes.

Whole-blood-transcriptome analysis. The preparation of RNA-seq data has been
described in detail elsewhere58. RNA-seq reads were trimmed of adapters together
with low-quality leading and trailing bases using Trimmomatic (version 0.36)59.
Additional quality control was performed with FastQC (version 0.11.2). The final
set of reads were mapped to a human genome reference version GRCh37.p13 using
STAR (version 2.4.2a)60. Sample mix-ups were tested and corrected for using
MixupMapper61. Principal component analysis on RNA-seq read counts revealed a
batch of outlying samples which was uncovered to be due to a technical problem in
library preparation—affected samples were discarded. Data were normalized using
the weighted trimmed mean of M values62 and used as log2-transformed counts
per million. To account for (hidden) batch effects, the sequencing batch date
together with the first gene expression principal components were used in all
subsequent analyses.
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InChianti
Study population. The InCHIANTI study is a population-based sample that
includes 298 individuals of age <65 years and 1155 individuals of age ≥65 years.
The study design and protocol have been described in detail previously63. The data
collection started in September 1998 and was completed in March 2000. The
INRCA Ethical Committee approved the entire study protocol.

Whole-blood-transcriptome analysis. Peripheral blood specimens were collected
from 712 individuals using the PAXgene tube technology to preserve levels of
mRNA transcripts. RNA was extracted from peripheral blood samples using the
PAXgene Blood mRNA kit (Qiagen, Crawley, UK) according to the manufacturer’s
instructions.

RNA was biotinylated and amplified using the Illumina® TotalPrep(tm) −96
RNA Amplification Kit and directly hybed with Human HT-12_v3 Expression
BeadChips that include 48,803 probes. Image data were collected on an Illumina
iScan and analysed using Illumina GenomeStudio software. These experiments
were performed as per the manufacturer’s instructions and as previously
described64. Quality-control analysis of gene expression levels were previously
described65.

SHIP-Trend
Study population. The Study of Health in Pomerania (SHIP-Trend) is a long-
itudinal population-based cohort study in West Pomerania, a region in the
northeast of Germany, assessing the prevalence and incidence of common
population-relevant diseases and their risk factors. Baseline examinations for SHIP-
Trend were carried out between 2008 and 2012, comprising 4420 participants aged
between 20 and 81 years. Study design and sampling methods were previously
described66. The medical ethics committee of the University of Greifswald
approved the study protocol, and oral and written informed consents were
obtained from each of the study participants.

Whole-blood-transcriptome analysis. Blood sample collection, as well as RNA
preparation, were described in detail elsewhere67. Briefly, whole-blood samples of a
subset of SHIP-TREND were collected from the participants after overnight fasting
(≥10 h) and stored in PAXgene Blood RNA Tubes (BD). Subsequently, RNA was
prepared using the PAXgeneTM Blood miRNA Kit (QIAGEN, Hilden, Germany).
The purity and concentration of RNA were determined using a NanoDrop ND-
1000 UV-Vis Spectrophotometer (Thermo Scientific). To ensure a constantly high
quality of the RNA preparations, all samples were analyzed using RNA 6000 Nano
LabChips (Agilent Technologies, Germany) on a 2100 Bioanalyzer (Agilent
Technologies, Germany) according to the manufacturer’s instructions. Samples
exhibiting an RNA integrity number (RIN) less than seven were excluded from
further analysis. The Illumina TotalPrep-96 RNA Amplification Kit (Ambion,
Darmstadt, Germany) was used for reverse transcription of 500 ng RNA into
double-stranded (ds) cDNA and subsequent synthesis of biotin-UTP-labeled
antisense-cRNA using this cDNA as the template. Finally, in total 3000 ng of cRNA
were hybridized with a single array on the Illumina Human HT-12 v3 BeadChips,
followed by washing and detection steps in accordance with the Illumina protocol.
Processing of the SHIP-Trend RNA samples was performed at the Helmholtz
Zentrum München. BeadChips were scanned using the Illumina Bead Array
Reader. The Illumina software GenomeStudio V 2010.1 was used to read the
generated raw data, for imputation of missing values and sample quality control.
Subsequently, raw gene expression data were exported to the statistical environ-
ment R, version 2.14.2 (R Development Core Team 2011). Data were normalized
using quantile normalization and log2-transformation using the lumi 2.8.0 package
from the Bioconductor open-source software (http://www.bioconductor.org/).
Finally, 991 samples were available for gene expression analysis. Technical cov-
ariates used in all statistical models included RNA amplification batch, RNA
quality (RIN), and sample storage time. The SHIP-Trend expression dataset is
available at GEO (Gene Expression Omnibus) public repository under the acces-
sion GSE 36382: 991 samples were available for analysis.

Phenotype-gene expression correlation. To calculate the correlation between the
phenotypes and the gene expression levels, we asked each cohort to run the fol-
lowing analysis. First, the inverse normal transformation was applied to phenotypes
and gene expression. Next, transformed phenotypes were adjusted only for sex, age,
and age2, while gene expression was also corrected for other known relevant
covariates. Finally, Pearson’s correlation was calculated between the adjusted trait
and the adjusted expression. Finally, correlations from single cohorts were com-
bined using inverse-variance meta-analysis, where weights are proportional to the
squared standard error of the correlation estimates, as implemented in METAL68.

Observed and true correlation between gene expression and traits. The cor-
relation between the effects estimated by revTWMR ðαrevTWMRÞ and the observa-
tional correlation (corrðE;TÞ) measured in the individual data from EGCUT,
InChianti, and SHIP-Trend was calculated using Pearson’s correlation. As such
correlation does not consider the error of the estimations, for the significant cor-
relations we used the linear errors-in-variables models to compute the potential

true correlation using the following equation

corrobs ¼ corrtrue �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

∑NGenes
j¼1 SE αrevTWMR

� �2
∑NGenes

j¼1 αrevTWMR
2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

∑NGenes
j¼1 SE corrðE;TÞð Þ2

∑NGenes
j¼1 corrðE;TÞ2

vuut

ð7Þ

Proportion of observational correlation explained by bidirectional causal
effects. Let E and T denote the gene expression and the trait, respectively. In
addition, there may exist a confounding factor U causally impacting both of them.
We can express E and T as:

T ¼ αTWMR � E þ qT � U þ εT ð8Þ
And

E ¼ αrevTWMR � T þ qE � U þ εE ð9Þ
where αTWMR and αrevTWMR are the causal effects of E on T and of T on E estimated
by TWMR and revTWMR respectively; qT and qE are the causal effects of the
confounders on T and E; and εT � Nð0; σT Þ and εE � Nð0; σEÞ represent
uncorrelated errors. More specifically, εT , εE , and U are all independent of each
other, because all dependence between T and E are due to bidirectional causal
effects and the confounder U, the residual noises are independent of each other and
of the confounder.

For simplicity, we assume that E, T, and U have zero mean and unit variance, so
that the correlation between E and T can be expressed as

corr E;Tð Þ ¼ cov E;Tð Þ ¼ E E � Tð Þ ¼ αTWMR þ αrevTWMR � αTWMR � αrevTWMR � E E � Tð Þ þ qT � qE
ð10Þ

Equivalently,

corr E;Tð Þ ¼ αTWMR þ αrevTWMR þ qT � qE
1þ αTWMR � αrevTWMR

ð11Þ
As we know the correlation, the bidirectional causal effects estimated by TWMR

and revTWMR, we can estimate the contribution of the confounders (qT � qE) to
the observed correlation. Since the magnitude of αTWMR � αrevTWMR is negligible,
we replaced the denominator with 1.

To avoid the recursive equations expressing the forward and reverse causal
effects of E on T, we can substitute T into the equation for E and obtain

E ¼ αrevTWMR � ðαTWMR � E þ qT � U þ εT Þ þ qE � U þ εE
E ¼ αreTWMR � αTWMR � E þ ðαrevTWMR � qT þ qEÞ � U þ αrevTWMR � εT þ εE

ð1� αrevTWMR � αTWMRÞ � E ¼ �
αrevTWMR � qT þ qE

� � U þ αrevTWMR � εT þ εE

E ¼ ðαrevTWMR � qT þ qEÞ � U þ αrevTWMR � εT þ εE
1� αrevTWMR � αTWMR

ð12Þ

Similarly for T

T ¼ αTWMR � ðαrevTWMR � T þ qE � U þ εEÞ þ qT � U þ εT
T ¼ αTWMR � αrevTWMR � T þ ðαTWMR � qE þ qT Þ � U þ αTWMR � εE þ εT
ð1� αTWMR � αrevTWMRÞ � T ¼ ðαTWMR � qE þ qT Þ � U þ αTWMR � εE þ εT

T ¼ ðαTWMR � qE þ qT Þ � U þ αTWMR � εE þ εT
1� αTWMR � αrevTWMR

ð13Þ

GWAS hits trans-eQTL mapping in GTEx. Genotypes and gene expression
quantifications from the GTEx project v8 dataset47 were obtained via dbGaP
accession number phs000424.v8.p1. This includes genotypes of 838 subjects, 85.3%
of European American origin, 12.3% African American, and 1.4% Asian American.
The phased version of the genotype files was used and the genotypes for 1078 out
of 1093 GWAS hits used as instrument variables in revTWMR were retrieved,
matching for chromosome, position, and reference/alternative allele, after con-
version to GRCh38 coordinates using the UCSC liftOver tool69. Gene expression
quantification (TPM values) from RNA-seq experiments across 49 tissues (for
which genotype data is also available for ≥70 individuals) processed and provided
by the GTEx project v8 were also downloaded. These gene expression quantifi-
cations had been mapped to Gencode v2670 gene annotations on GRCh38 and
normalized by TMM between samples (as implemented in edgeR), and inverse
normal transform across samples. Moreover, only genes passing an expression
threshold of >0.1 TPM in ≥20% samples and ≥6 reads in ≥20% samples had been
retained. The association between each of the 2177 GWAS hits genotyped in GTEx
v8 and each gene expression (20,315 to 35,007 genes per tissue, all gene types)
across 49 tissues of the GTEx v8 was computed using QTLtools v1.3.1 trans
function71. This consists of more than 2 billion association tests performed. For
this, the–nominal option for calculating nominal p values was used, as well as
the–normal option, to enforce the gene expression phenotypes to match normal
distributions N(0,1). To include all associations, no cis window filtering was
applied. Moreover, covariates provided by GTEx v8 for each tissue were regressed
out of each expression matrix to account for potential confounding factors, by
using the–covariate option on QTLtools. These included 15 to 60 PEER factors
(depending on tissue sample size)72, five genotype PCA PCs as well as information
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about the sequencing platform, PCR usage, and the sex of the samples provided by
GTEx v8.

Analysis of mouse data. We used blood triglyceride and liver gene expression in a
panel of BXD mice that were fed a chow or high-fat diet (CD and HFD48). The
study involves 52 strains, with five mice per strain per condition. Male mice were
switched to an HFD diet at 8 weeks of age, subjected to extensive cardiometabolic
phenotyping, and finally sacrificed at 29 weeks of age after an overnight fast. The
blood and liver collection were performed simultaneously during tissue collection.
Microarray data and triglyceride measurements in the two diets are available for a
subset of 34 strains. Phenotype data, including blood triglyceride measurement, are
deposited in the Mouse Phenome Database (https://phenome.jax.org/projects/
Auwerx1) and the raw gene expression data in the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60149). To calculate
diet-induced TG change, we subtracted the strain average on CD from that on
HFD and converted the resulting difference into a z-score. We normalized the
Affymetrix Mouse Gene 1.0 ST Array data using the Affymetrix Power Tools
software version 1.20.5 with GC correction (GCCN) and space transformation
(SST). We removed the lowest quartile of genes based on average expression in all
samples. For each BXD strain, we calculated strain-level HFD-induced fold change
as the difference in the expression on HFD minus that of CD and then converted
these values to z-scores. We then performed Spearman’s correlation for each gene’s
HFD-induced fold change and the TG diet-induced differences. We used the
biomaRt R package version 2.42.173 to convert between mouse and human gene
Ensembl IDs.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The trans-eQTLs data used in this study are available on the eQLTGen Consortium
website [https://www.eqtlgen.org/trans-eqtls.html]. The GWAS data are available in the
NIH Genome-wide Repository of Associations Between SNPs and Phenotypes [https://
grasp.nhlbi.nih.gov/] and in the Neal Lab website [http://www.nealelab.is/uk-biobank/].
For the mouse data, phenotype data, including blood triglyceride measurement, are
deposited in the Mouse Phenome Database [https://phenome.jax.org/projects/Auwerx1]
and the raw gene expression data in the Gene Expression Omnibus [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE60149]. Source data are provided with this paper.

Code availability
R-code for performing revTWMR analyses is available at https://github.com/eleporcu/
revTWMR https://doi.org/10.5281/zenodo.5119244.
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