1,200 research outputs found

    Lithium atom storage in nanoporous cellulose via surface induced Li2\rm Li_2 breakage

    Full text link
    We demonstrate a physical mechanism that enhances a splitting of diatomic Li2\rm Li_2 at cellulose surfaces. The origin of this splitting is a possible surface induced diatomic excited state resonance repulsion. The atomic Li is then free to form either physical or chemical bonds with the cellulose surface and even diffuse into the cellulose layer structure. This allows for an enhanced storage capacity of atomic Li in nanoporous celluloseComment: 5 pages, 6 figure

    Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem

    Get PDF
    Hairpin nucleic acid probes have been highly useful in many areas, especially for intracellular and in vitro nucleic acid detection. The success of these probes can be attributed to the ease with which their conformational change upon target binding can be coupled to a variety of signal transduction mechanisms. However, false-positive signals arise from the opening of the hairpin due mainly to thermal fluctuations and stem invasions. Stem invasions occur when the stem interacts with its complementary sequence and are especially problematic in complex biological samples. To address the problem of stem invasions in hairpin probes, we have created a modified molecular beacon that incorporates unnatural enantiomeric l-DNA in the stem and natural d-DNA or 2′-O-Me-modified RNA in the loop. l-DNA has the same physical characteristics as d-DNA except that l-DNA cannot form stable duplexes with d-DNA. Here we show that incorporating l-DNA into the stem region of a molecular beacon reduces intra- and intermolecular stem invasions, increases the melting temperature, improves selectivity to its target, and leads to enhanced bio-stability. Our results suggest that l-DNA is useful for designing functional nucleic acid probes especially for biological applications

    Volumetric combustion of biomass for CO 2 and NOx reduction in coal-fired boilers

    Get PDF
    To meet the urgent environmental targets, substituting coal with biomass has been considered to be an effective and promising method over the last decades. In this paper, a new concept of volumetric combustion is proposed and further developed to achieve 100% fuel switching to biomass in large scale coal-fired boilers. Volumetric combustion not only changes the in-furnace flow but also affects the combustion reactions by the intensive mixing and internal recirculation of the flue gases. Firstly, the volumetric combustion properties of the wood pellets were investigated experimentally. An Aspen model was then used to thermodynamically describe and study the volumetric combustion with three different types of fuel, and the emission properties of CO 2 and NOx were compared. Finally, two applications of volumetric combustion were discussed. It is concluded that the wood pellets ignited and combusted much faster than the coal pellets and had a larger combustion volume when combusted under lower oxygen concentration conditions, and the ignition time was almost independent of the oxygen concentration when the oxidizer was preheated to 1000 °C. In addition, the NOx emissions decreased as the recirculation ratio of the flue gas increased, and as the percentage of biomass used in co-firing increased, the amount of flue gas that needs to be recycled for reduction of NOx decreased. Thus, the volumetric combustion is beneficial as it reduces the operation cost of NOx reduction. The volumetric combustion would be an attractive technology for co-firing a large proportion of biomass in coal-fired boilers with high boiler efficiency and effective emissions reduction

    Numerical Simulation on the Stability of Surrounding Rock of Horizontal Rock Strata in the Tunnel

    Get PDF
    Horizontal rock strata is a geological condition of rock which is often encountered in the tunnel construction, and it has an important influence on the tunnel construction, it is necessary to analyze and study the stability of horizontal rock strata in tunnel construction to ensure the tunnel construction’s safety and efficiency. By taking “Xishan Highway Tunnel” as the research object, and using the numerical simulation method, the numerical model of the tunnel has been established in the Midas/GTS to simulate the tunnel excavation under the horizontal rock strata condition,and the deformation and failure mechanism of surrounding rock and the influence factors of surrounding rock stability after are studied and analyzed. The research focused on the displacement of surrounding rock horizontal and vertical deformation, the results show that the vertical displacement of the surrounding rock is obviously greater than that of other parts during the excavation of the horizontal rock tunnel. According to the calculation results, the optimization measures of horizontal stratum tunnel construction method are put forward, which has important reference value for ensuring the construction safety and construction quality

    Environmental Impacts of Artisanal Gold Mining: A case study of Nkaseim Community - Ghana

    Get PDF
    Artisanal gold mining [AGM] has numerous socio-economic benefits to communities involved. However, the four environmental variables or constructs used revealed that AGM significantly affects the environment. In other words; despite a source of livelihood; AGM communities are besieged with issues such as water pollution, land degradation and air pollution which affect almost all facets of the environment including humans. Most miners have no idea about alternative technologies to make AGM sustainable, yet Ghana ranks next to South Africa as the highest producers of gold in Africa. This paper, therefore, discusses the consequences of AGM for stakeholders to regularize AGM activities; and adopt alternative methods to mitigate the damage caused to the environment. Keywords: Artisanal gold mining, environmental impacts, regularize, pollutio

    High-temperature rapid devolatilization of biomasses with varying degrees of torrefaction

    Get PDF
    Torrefied biomass is a coal-like fuel that can be burned in biomass boilers or co-fired with coal in co-firing furnaces. To make quantitative predictions regarding combustion behavior, devolatilization should be accurately described. In this work, the devolatilization of three torrefied biomasses and their parent material were tested in an isothermal plug flow reactor, which is able to rapidly heat the biomass particles to a maximum temperature of 1400 ºC at a rate of 104 ºC/s, similar to the conditions in actual power plant furnaces. During every devolatilization test, the devolatilized biomass particles were collected and analyzed to determine the weight loss based on the ash tracer method. According to the experimental results, it can be concluded that biomass decreases its reactivity after torrefaction, and the deeper of torrefaction conducted, the lower the biomass reactivity. Furthermore, based on a two-competing-step model, the kinetic parameters were determined by minimizing the difference between the modeled and experimental results based on the least-squares objective function, and the predicted weight losses exhibited a good agreement with experimental data from biomass devolatilization, especially at high temperatures. It was also detected that CO and H2 are the primary components of the released volatile matters from the devolatilization of the three torrefied biomasses, in which CO accounts for approximately 45-60%, and H2 accounts for 20-30% of the total volatile species

    Flame characteristics of pulverized torrefied-biomass combusted with high-temperature air

    Get PDF
    In this work, the flame characteristics of torrefied biomass were studied numerically under high-temperature air conditions to further understand the combustion performances of biomass. Three torrefied biomasses were prepared with different torrefaction degrees after by releasing 10%, 20%, and 30% of volatile matter on a dry basis and characterized in laboratory with standard and high heating rate analyses. The effects of the torrefaction degree, oxygen concentration, transport air velocity, and particle size on the flame position, flame shape, and peak temperature are discussed based on both direct measurements in a laboratory-scale furnace and CFD simulations. The results primarily showed that the enhanced drag force on the biomass particles caused a late release of volatile matter and resulted in a delay in the ignition of the fuel-air mixture, and the maximum flame diameter was mainly affected by the volatile content of the biomass materials. Furthermore, oxidizers with lower oxygen concentrations always resulted in a larger flame volume, a lower peak flame temperature and a lower NO emission. Finally, a longer flame was found when the transport air velocity was lower, and the flame front gradually moved to the furnace exit as the particle size increased. The results could be used as references for designing a new biomass combustion chamber or switching an existing coal-fired boiler to the combustion of biomass

    The N\'eel order for a frustrated antiferromagnetic Heisenberg model: beyond linear spin-wave theory

    Full text link
    Within Dyson-Maleev (DM) transformation and self-consistent mean-field treatment, the N\'eel order/disorder transition is studied for an antiferromagnetic Heisenberg model which is defined on a square lattice with a nearest neighbour exchange J1J_1 and a next-nearest neighbour exchange J2J_2 along only one of the diagonals. It is found that the N\'eel order may exist up to J2/J1=0.572J_2/J_1=0.572, beyond its classically stable regime. This result qualitatively improves that from linear spin-wave theory based on Holstein-Primakoff transformation.Comment: 10 pages, 4 eps figure

    Char oxidation of torrefied biomass at high temperatures and high heating rates

    Get PDF
    The char oxidation of a torrefied biomass and its parent material was carried out in an isothermal plug flow reactor (IPFR), which is able to rapidly heat the biomass particles to a maximum temperature of 1400°C at a heating rate of 10;4; °C/s, similar to the real conditions found in power plant furnaces. During each char oxidation test, the residues of biomass particles were collected and analyzed to determine the weight loss based on the ash tracer method. According to the experimental results, it can be concluded that chars produced from a torrefied biomass are less reactive than the ones produced, under the same conditions, from its raw material. The apparent kinetics of the torrefied biomass and its parent material are determined by minimizing the difference between the modeled and the experimental results. The predicted weight loss during char oxidation, using the determined kinetics, agrees well with experimental results
    corecore