127,821 research outputs found

    Symmetry of Nodal Solutions for Singularly Perturbed Elliptic Problems on a Ball

    Get PDF
    In [40], it was shown that the following singularly perturbed Dirichlet problem \ep^2 \Delta u - u+ |u|^{p-1} u=0, \ \mbox{in} \ \Om,\] \[ u=0 \ \mbox{on} \ \partial \Om has a nodal solution u_\ep which has the least energy among all nodal solutions. Moreover, it is shown that u_\ep has exactly one local maximum point P_1^\ep with a positive value and one local minimum point P_2^\ep with a negative value and, as \ep \to 0, \varphi (P_1^\ep, P_2^\ep) \to \max_{ (P_1, P_2) \in \Om \times \Om } \varphi (P_1, P_2), where \varphi (P_1, P_2)= \min (\frac{|P_1-P_2}{2}, d(P_1, \partial \Om), d(P_2, \partial \Om)). The following question naturally arises: where is the {\bf nodal surface} \{ u_\ep (x)=0 \}? In this paper, we give an answer in the case of the unit ball \Om=B_1 (0). In particular, we show that for \epsilon sufficiently small, P_1^\ep, P_2^\ep and the origin must lie on a line. Without loss of generality, we may assume that this line is the x_1-axis. Then u_\ep must be even in x_j, j=2, ..., N, and odd in x_1. As a consequence, we show that \{ u_\ep (x)=0 \} = \{ x \in B_1 (0) | x_1=0 \}. Our proof is divided into two steps: first, by using the method of moving planes, we show that P_1^\ep, P_2^\ep and the origin must lie on the x_1-axis and u_\ep must be even in x_j, j=2, ..., N. Then, using the Liapunov-Schmidt reduction method, we prove the uniqueness of u_\ep (which implies the odd symmetry of u_\ep in x_1). Similar results are also proved for the problem with Neumann boundary conditions

    Stationary solutions for the Cahn-Hilliard equation

    Get PDF
    We study the Cahn-Hilliard equation in a bounded domain without any symmetry assumptions. We assume that the mean curvature of the boundary has a nongenerate critical point. Then we show that there exists a spike-like stationary solution whose global maximum lies on the boundary. Our method is based on Lyapunov-Schmidt reduction and the Brouwer fixed-point theorem

    Spikes for the Gierer-Meinhardt system with discontinuous diffusion coefficients

    Get PDF
    The original publication is available at http://www.springerlink.com/content/vw2m382276u4g814/We rigorously prove results on spiky patterns for the Gierer-Meinhardt system with a jump discontinuity in the diffusion coefficient of the inhibitor. Firstly, we show the existence of an interior spike located away from the jump discontinuity, deriving a necessary condition for the position of the spike. In particular we show that the spike is located in one-and-only-one of the two subintervals created by the jump discontinuity of the inhibitor diffusivity. This localisation principle for a spike is a new effect which does not occur for homogeneous diffusion coefficients. Further, we show that this interior spike is stable. Secondly, we establish the existence of a spike whose distance from the jump discontinuity is of the same order as its spatial extent. The existence of such a spike near the jump discontinuity is the second new effect presented in this paper. To derive these new effects in a mathematically rigorous way, we use analytical tools like Liapunov-Schmidt reduction and nonlocal eigenvalue problems which have been developed in our previous work. Finally, we confirm our results by numerical computations for the dynamical behavior of the system. We observe a moving spike which converges to a stationary spike located in the interior of one of the subintervals or near the jump discontinuity
    corecore