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Abstract. In this paper, we rigorously prove the existence and stability
of K-peaked asymmetric patterns for the Gierer-Meinhardt system in a
two dimensional domain which are far from spatial homogeneity. We
show that given any positive integers k1, k2 ≥ 1 with k1 + k2 = K,
there are asymmetric patterns with k1 large peaks and k2 small peaks.
Most of these asymmetric patterns are shown to be unstable. However,
in a narrow range of parameters, asymmetric patterns may be stable (in
contrast to the one-dimensional case).
Résumé. Nous prouvons l’existence et la stabilité de les structures
asymétriques pour le systéme de Gierer-Meinhardt dans un domaine ou-
vert deux-dimensionnel qui sont distantes de la homogénéité spatiale.
Pour k2 ≥ 1, k1 ≥ 1 il y a des structures avec k1 grands et k2 petits pics.
La plupart des solutions asymétriques sont instables. Pour un région
petit des paramètres les solutions asymétriques pouvons ětre stables (en
contraste d’une dimension).

1. Introduction

Turing in his pioneering work in 1952 [30] proposed that a patterned distri-

bution of two biochemical substances, called the morphogens, could trigger

the emergence of a cell structure. He also gives the following explanation

for the formation of the morphogenetic pattern: He assumes that one of the

morphogens, the activator, diffuses slowly and the other, the inhibitor, dif-

fuses much faster. In the mathematical framework of a coupled system of

reaction-diffusion equations with very different diffusion coefficients he shows

by linear stability analysis that the homogeneous state can be unstable. In

particular, a small perturbation of spatially homogeneous initial data can

evolve to a stable spatially complex pattern of the morphogens.

1991 Mathematics Subject Classification. Primary 35B40, 35B45; Secondary 35J40.
Key words and phrases. Asymmetric Patterns, Pattern Formation, Mathematical Bi-

ology, Singular Perturbation, Weak Coupling.
1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 JUNCHENG WEI AND MATTHIAS WINTER

Since the work of Turing, a lot of models have been proposed and analyzed

to explore this phenomenon, which is now called Turing instability, and its

implications for the understanding of various patterns more fully. One of the

most famous of these models is the Gierer-Meinhardt system [11], [22]. In

two dimensions, after rescaling and considering a special case, it is as follows:

(GM)

⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + A2

H
, A > 0 in Ω,

τHt = D∆H − H + A2, H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω.

The unknowns A = A(x, t) and H = H(x, t) represent the concentrations

of two morphogens called activator and inhibitor, respectively, at a point

x ∈ Ω ⊂ R2 and at a time t > 0, respectively; ∆ :=
∑2

j=1
∂2

∂x2
j

is the Laplace

operator in R2; Ω is a bounded and smooth domain in R2; ν(x) is the outer

normal at x ∈ ∂Ω. Throughout this paper, we assume that

ε << 1, ε does not depend on x, t,

τ ≥ 0 does not depend on x, t, or ε,

D > 0 does not depend on x, t, but it depends on ε.

In this paper, we further define

β2 =
1

D
, ηε =

β2|Ω|
2π

log

√
|Ω|
ε

, (1.1)

where |Ω| denotes the area of Ω, and assume that

lim
ε→0

ηε = η0 ∈ (0, +∞). (1.2)

Note that (1.2) implies that

D → ∞ and β → 0 as ε → 0.

More precisely, we have

D ∼ |Ω| log

√
|Ω|
ε

2πη0

(1.3)

and

β2 ∼ 2πη0

|Ω| log

√
|Ω|
ε

. (1.4)
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Numerical studies by Meinhardt [22] and more recently by Holloway [14]

and McInerney [20] have revealed that when ε is small and D is finite, (GM)

seems to have stable stationary states with the property that the activator

concentration is localized in K peaks which are located near certain K points

in Ω. Moreover, as ε → 0 the pattern exhibits a “point condensation phe-

nomenon”. By this we mean that these peaks become narrower and narrower

and eventually shrink to the set of points itself. In fact, their spatial exten-

sion is of the order O(ε). Furthermore, the maximum value of the inhibitor

concentration diverges to +∞. Numerically, it has been observed that these

patterns are stable.

In [42], we considered the existence and stability of symmetric K−peaked

solutions of the following stationary Gierer-Meinhardt system:

⎧⎪⎪⎨
⎪⎪⎩

ε2∆A − A + A2

H
= 0, A > 0 in Ω,

D∆H − H + A2 = 0, H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω

(1.5)

in the case D = D(ε) → ∞ as ε → 0 and for ε small enough (which is called

“weak coupling case”).

A K−peaked solution (Aε, Hε) of (1.5) is assumed to take the following

form:

Aε(x) ∼
N∑

j=1

ξε,jw(
x − P ε

j

ε
), Hε(P

ε
j ) ∼ ξε,j, (1.6)

where ξε,j is the height of the peak at the location P ε
j , j = 1, ..., K, and w is

the unique solution of the problem

⎧⎨
⎩ ∆w − w + w2 = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞.
(1.7)

For existence and uniqueness of the solutions of (1.7) we refer to [18]. We

also recall that

w(y) ∼ |y|−1/2e−|y| as |y| → ∞. (1.8)
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In [42], we assumed that the K−peaked solution is asymptotically sym-

metric, i.e., as ε → 0,

lim
ε→0

ξε,j

ξε,1

= 1, j = 2, ..., K. (1.9)

Under the condition (1.9), we showed the existence of symmetric K−peaked

solutions whose peaks converge to a nondegenerate critical point of a func-

tional involving a certain Green’s function and its derivatives. For the sta-

bility, we proved that there are stability thresholds

D1(ε) > D2(ε) > D3(ε) > . . . > DN(ε) > . . .

such that for D < DK(ε) the symmetric K-peaked solution is stable and

for D > DK(ε) the symmetric N -peaked solution is unstable if ε is small

enough. Furthermore, we showed that

DK(ε) ∼ |Ω|
2πK

log

√
|Ω|
ε

as ε → 0.

Naturally, the following questions can be raised:

Question: Are there solutions which are not symmetric (i.e, (1.9) does not

hold)? If yes, are they stable? Can we characterize all asymmetric solutions?

In this paper we solve these questions affirmatively. We show that the

heights (ξε,1, ..., ξε,K) must satisfy a certain nonlinear algebraic system which

can be solved explicitly (Sections 2 and 3). As a result, we show that the

asymmetric patterns are generated by peaks of exactly two different heights.

We then give a rigorous construction of asymmetric K-peaked stationary

states by using the powerful method of Liapunov-Schmidt reduction. This

enables us to reduce the infinite-dimensional problem of finding an equilib-

rium state of (GM) to the finite-dimensional one of locating the K points at

which the peaks concentrate. We give a sufficient condition for these points

in terms of a Green’s function and its derivatives.

Concerning stability, one has to study the eigenvalues of the order O(1),

which are called “large eigenvalues”, and the eigenvalues of the order o(1),

which are called “small eigenvalues”, separately. We show that the small

eigenvalues are related to a Green’s function and its derivatives. Suppose

that these small eigenvalues all have negative real part. We then show that
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stable asymmetric K−peaked solutions exist only in a very narrow range of

D, namely for

1

2πK
log

√
|Ω|
ε

<
D

|Ω| <
1

4π
√

k1k2

log

√
|Ω|
ε

(1.10)

and ε small enough, where k1 and k2 are two integers satisfying k1 + k2 =

K, k1 ≥ 1, k2 ≥ 1.

We now describe the results of the paper in detail.

Let K ≥ 2 be a positive integer. Let k1, k2 ≥ 1 be two integers such that

k1 + k2 = K. (1.11)

Let η0 (defined in (1.2)) be such that

η0 > 2
√

k1k2. (1.12)

Set

ρ+ =
2k2 + η0 +

√
η2

0 − 4k1k2

2η0(η0 + K)
, ρ− =

2k2 + η0 −
√

η2
0 − 4k1k2

2η0(η0 + K)
,
(1.13)

η+ =
2k1 + η0 −

√
η2

0 − 4k1k2

2η0(η0 + K)
, η− =

2k1 + η0 +
√

η2
0 − 4k1k2

2η0(η0 + K)
.
(1.14)

Note that

ρ+ + η+ =
1

η0

, ρ− + η− =
1

η0

. (1.15)

Let (ρ, η) = (ρ+, η+) or (ρ, η) = (ρ−, η−). We drop “±” if there is no confu-

sion.

Let (ξ̂1, . . . , ξ̂K) ∈ RK
+ be such that

ξ̂j ∈ {ρ, η}, and the number of ρ’s in (ξ̂1, . . . , ξ̂K) is k1.
(1.16)

Then there are k2 η’s in (ξ̂1, . . . , ξ̂K).

For δ > 0 and δ small enough we define

Λδ = {P = (P1, P2, . . . , PK) ∈ ΩK : |Pi − Pj| > 4δ for i �= j

and d(Pi, ∂Ω) > 4δ for i = 1, 2 . . . , K}, (1.17)
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where

Pi = (Pi,1, Pi,2) for i = 1, 2, . . . , K.

Let G0(x, ξ) be the Green’s function⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆G0(x, ξ) − 1
|Ω| + δξ(x) = 0 in Ω,∫

Ω
G0(x, ξ) dx = 0,

∂G0(x, ξ)

∂νx

= 0 on ∂Ω

(1.18)

and let

H0(x, ξ) =
1

2π
log

1

|x − ξ| − G0(x, ξ) (1.19)

be the regular part of G0(x, ξ). Here δξ(x) means the Dirac measure at x = ξ.

For P ∈ Λδ we define

F (P) =
K∑

k=1

H0(Pk, Pk)ξ̂
4
k −

∑
i,j,=1,...,K,i �=j

G0(Pi, Pj)ξ̂
2
i ξ̂

2
j

(1.20)

and

M(P) = ∇2
PF (P). (1.21)

Note that F (P) ∈ C∞(Λδ).

Then we have our first theorem, which is on the existence of asymmetric

K−peaked solutions.

Theorem 1.1. Let K ≥ 2 be a positive integer. Let k1, k2 ≥ 1 be two

integers such that k1 + k2 = K. Let

β2 =
1

D
, ηε =

β2|Ω|
2π

log

√
|Ω|
ε

,

where |Ω| denotes the area of Ω, Assume that (1.2) and (1.12) hold.

Assume that

(T1) η0 �= K

and let

(T2) P0 = (P 0
1 , P 0

2 , . . . , P 0
K) ∈ Λδ be a nondegenerate critical point of F (P)

(defined by (1.20)).
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Then for ε sufficiently small problem (1.5) has a solution (Aε, Hε) with the

following properties:

(1) Aε(x) =
∑K

j=1 ξε,j(w(
x−P ε

j

ε
) + O( 1

D
)) uniformly for x ∈ Ω̄, where w is

the unique solution of (1.7) and

ξε,j = ξεξ̂ε,j, ξε =
|Ω|

ε2
∫
R2 w2

. (1.22)

Further, (ξ̂ε,1, ..., ξ̂ε,K) → (ξ̂1, ..., ξ̂K) which is given by (1.16).

(2) Hε(P
ε
j ) = ξε,j(1 + 1

D
) for j = 1, ..., K.

(3) P ε
j → P 0

j as ε → 0 for j = 1, ..., K.

Remark:

1.1). Condition (T1) of Theorem 1.1 is a technical condition which will

be used in the Liapunov-Schmidt reduction process. See Lemma 7.2.

Next we study the stability or instability of the asymmetric K-peaked

solutions constructed in Theorem 1.1.

Theorem 1.2. Assume that (1.2) and (1.12) hold. Further, assume that

(T1) and (T2) of Theorem 1.1 hold and let (Aε, Hε) be the K−peaked solu-

tions constructed in Theorem 1.1 for ε sufficiently small, whose peaks con-

verge to P0 ∈ Λδ. Further assume that

(∗) P0 is a nondegenerate local maximum point of F (P).

Then we have:

(a) (Stability)

Assume that

2
√

k1k2 < η0 < K (1.23)

and

k1 > k2, (ρ, η) = (ρ+, η+).

Then, for τ small enough, (Aε, Hε) is linearly stable.

(b) (Instability)

Assume that either

η0 > K
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or

τ is large enough.

Then (Aε, Hε) is linearly unstable.

The condition on the locations of P0 is not so severe. For any bounded

smooth domain Ω, the functional F (P) always admits a global maximum

at some P0 ∈ Λδ. In fact, this can be seen very easily: if |Pi − Pj| or

d(Pi, ∂Ω) goes to 0, then F (P) goes to −∞. (Note that H(Pi, Pi) → −∞ as

d(Pi, ∂Ω) → 0.) This global maximum point P0 is a critical point of F (P). If

P0 is also a nondegenerate critical point of F (P) which should be a generic

condition, then the matrix M(P0) has only negative eigenvalues. It is an

interesting question to numerically compute the critical points of F (P). For

recent progress in this direction see [21].

Let us now compare the results about existence and stability of asymmetric

patterns in R2 to those in R1.

In R1, we assume that Ω = (−1, 1). In 1986, I. Takagi [29] first showed

the existence of symmetric K−peaked solutions with spikes centered at

xj = −1 +
2j − 1

N
, j = 1, . . . , N,

for ε << 1, ε√
D

<< 1.

Such solutions are obtained from a single spike by symmetric reflection.

His main idea is to use symmetry and the implicit function theorem.

Using matched asymptotic analysis, D. Iron, M. Ward, and the first author

[16] studied the stability of the symmetric K-peaked solutions for τ small

and showed (formally) that there exists a sequence of numbers D1 > D2 >

... > DK > ... such that for ε << 1: if D < DK , the symmetric K-peaked

solutions are stable, while for D > DK , the symmetric K-peaked solutions

are unstable.

M. Ward and the first author in [32] showed (formally) that for D <

DK , problem (1.5) has asymmetric K−peaked solutions. Such asymmetric

solutions are generated by two types of spikes – called type A and type B,

respectively. Type A and type B spikes have different heights and for any
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given order

ABAABBB...ABBBA...B

there is a corresponding K−peaked solution. The stability of such asymmet-

ric K−peaked solutions is studied also in [32], through a formal approach.

Later, in [41], by using the Liapunov-Schmidt reduction method, a rigor-

ous study of the existence and stability of both symmetric and asymmetric

solutions is given. It is proved that the stability and existence can be reduced

to the study of two K × K matrices. The results of [16] and [32] are then

rigorously established.

By using a different approach (geometric singular perturbation method),

Doelman, Kaper and van der Ploeg [10] also established the existence of

asymmetric patterns for D sufficiently small (i.e., for fixed D the domain

is sufficiently large). Moreover, some other asymmetric patterns are also

discovered in [10].

Though it has not been proved rigorously, it is a numerical observation

(by studying the two matrices of [32], [41]) that asymmetric patterns are all

unstable in R1.

In R2, we can completely characterize the heights and thus the possible

types of asymmetric patterns: asymmetric patterns are generated by exactly

two different heights. (The reason behind this is unclear.) Furthermore,

asymmetric patterns can be stable, even though the stability region given

in Theorem 1.2 is rather narrow. In most cases, asymmetric patterns are

unstable.

In terms of the heights, the results in R2 are more explicit than R1. How-

ever, the characterization in R1 is the same.

Another remark is that in R2, by our analysis of the algebraic system of

the heights, as D decreases (e.g., D = 1), asymmetric patterns disappear.

This is in contrast to the R1 case [10], [32].

We now comment on some other related work.

Generally speaking, system (1.5) is quite difficult to solve since it does

neither have a variational structure nor a priori estimates. One way to study

(1.5) is to examine the so-called shadow system. Namely, we let D → +∞
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first. It is known (see [17], [26], [28]) that the study of the shadow system

amounts to the study of the following single equation for p = 2:⎧⎨
⎩ ε2∆u − u + up = 0, u > 0 in Ω,

∂u
∂ν

= 0 on ∂Ω.
(1.24)

Equation (1.24) has a variational structure and has been studied by nu-

merous authors. It is known that equation (1.24) has both boundary spike

solutions and interior spike solutions. For boundary spike solutions, see [1],

[6], [12], [24], [25], [26], [38], and the references therein. For interior spike

solutions, see [2], [7], [13] and the references therein. For stability of spike

solutions, see [1], [3], [5], [15], [27], [34], [36]. For dynamics we refer to [4].

Finally, we remark that some of the results of Theorem 1.1 and Theorem

1.2 may be extended to the following generalized Gierer-Meinhardt system

(Generalized GM)

⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + Ap

Hq , A > 0 in Ω,

τHt = D∆H − H + Ar

Hs , H > 0 in Ω,
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω,

where the exponents (p, q, r, s) satisfy the following conditions

p > 1, q > 0, r > 0, s ≥ 0,
qr

(p − 1)(s + 1)
> 1.

For example, the existence result Theorem 1.1 can be proved for the gener-

alized Gierer-Meinhardt system without any technical difficulty. For the sta-

bility result, Theorem 1.2, there should be some restrictions on the (p, q, r, s).

(The results in [5], [35], and [43] concerning stability of nonlocal eigenvalue

problems in the general case may be useful.) We shall leave this to further

investigations.

Other work on concentrated solutions for reaction-diffusion systems in-

cludes [8], [29], [31], and the survey [23].

To simplify our notation, we use e.s.t. to denote exponentially small terms

in the corresponding norms, more precisely, e.s.t. = O(e−δ/ε) as ε → 0, where

δ is defined in (1.17). Throughout the paper C > 0 is a generic constant

which is independent of ε and may change from line to line. We always

assume that P, P0 ∈ Λδ, where Λδ is defined in (1.17) and that |P−P0| < 4δ.

The structure of the paper is as follows:
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In Section 2, we derive an algebraic system for the heights of the peaks.

In Section 3, we completely solve the nonlinear algebraic system for the

heights.

In Section 4, we study some nonlocal eigenvalue problems in the whole

R2, which will be used in Section 7.

In Section 5, we start the existence proof by reducing the problem to finite

dimensions.

In Section 6, we complete the existence proof by solving the reduced prob-

lem.

In Section 7, we use the results of Section 4 to study the stability of large

eigenvalues.

Finally, in Section 8, we study the small eigenvalues.

Acknowledgments. Both authors are supported by Stiftung Volkswa-

genwerk (RiP Program at Oberwolfach) and by RGC of Hong Kong/DAAD

of Germany (Hong Kong–Germany Joint Research Collaboration). The re-

search of JW is supported by an Earmarked Grant from RGC of Hong Kong.

MW thanks the Department of Mathematics at CUHK for their kind hospi-

tality.

2. Preliminaries I: A system for the heights of the peaks

In this section we calculate the heights of the peaks which are needed in the

sections below. It is found that the heights depend on the number of peaks

but not on their locations. This is a leading order asymptotic statement that

is valid for ε → 0 and D → ∞.

For β > 0 let Gβ(x, ξ) be the Green’s function given by

⎧⎪⎪⎨
⎪⎪⎩

∆Gβ − β2Gβ + δξ = 0 in Ω,

∂Gβ

∂ν
= 0 on ∂Ω.

(2.1)

Recall that β2 = 1
D

and therefore β ∼ 1√
log 1

ε

. Let G0(x, ξ) be the Green’s

function defined in (1.18).
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In Section 2 of [42] we have derived a relation between G0 and Gβ as

follows:

Gβ(x, ξ) =
β−2

|Ω| + G0(x, ξ) + O(β2) (2.2)

in the operator norm of L2Ω) → H2(Ω). (Note that the embedding of H2(Ω)

into L∞(Ω) is compact.)

We define cut-off functions as follows: Let P ∈ Λδ. Introduce

χε,Pj
(x) = χ

(
x − Pj

δ

)
, x ∈ Ω, j = 1, . . . , K, (2.3)

where χ is a smooth cut-off function which is equal to 1 in B1(0) and equal to

0 in R2 \ B2(0), where for r > 0, x ∈ R2 we set Br(x) = {y ∈ R2 : |y| ≤ r}.
Let us assume the following ansatz for a multiple-spike solution (Aε, Hε)

of (1.5): ⎧⎨
⎩ Aε ∼ ∑K

i=1 ξε,iw(
x−P ε

i

ε
)χε,Pi

(x),

Hε(P
ε
i ) ∼ ξε,i,

(2.4)

where w is the unique solution of (1.7), ξε,i, i = 1, ..., K are the heights of the

peaks, to be determined later, and Pε = (P ε
1 , ..., P

ε
K) ∈ Λδ are the locations

of the peaks.

Then we can make the following calculations.

From the equation for Hε,

∆Hε − β2Hε + β2A2
ε = 0,

we get, using (2.2),

Hε(P
ε
i ) =

∫
Ω

Gβ(P ε
i , ξ)β

2A2
ε(ξ) dξ

=
∫
Ω

(
1

|Ω| + β2G0(P
ε
i , ξ) + O(β4)

) ⎛
⎝ K∑

j=1

ξ2
ε,jw

2(
ξ − P ε

j

ε
)χε,Pj

(ξ)

⎞
⎠ dξ.

Thus

ξε,i = ξ2
ε,i

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,iβ
2

∫
Ω

G0(P
ε
i , ξ)w

2(
ξ − P ε

i

ε
)χε,Pi

(ξ) dξ

+
∑
j �=i

(
1

|Ω| + β2G0(P
ε
i , P

ε
j )

)
ξ2
ε,jε

2
∫

R2
w2(y) dy +

K∑
j=1

ξ2
ε,j(O(β2ε4) + O(β4ε2)).

(2.5)
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Here we have used that for j �= i∫
Ω

G0(P
ε
i , ξ)w

2(
ξ − P ε

j

ε
)χε,Pj

(ξ) dξ

= ε2
∫

R2
G0(P

ε
i , εy + P ε

j )w2(y) dy + e.s.t.

= ε2G0(P
ε
i , P

ε
j )

∫
R2

w2(y) dy + ε3
K∑

l=1

∂G0(P
ε
i , P

ε
j )

∂P ε
j,l

∫
R2

w2(y)yl dy + O(ε4)

= ε2G0(P
ε
i , P

ε
j )

∫
R2

w2(y) dy + O(ε4).

(Here we have set y =
ξ−P ε

j

ε
and we have used the relation∫

R2
w2(y)yl dy = 0

which holds since w is radially symmetric).

Using (1.19) in (2.5) gives

ξε,i = ξ2
ε,i

ε2

|Ω|
∫

R2
w2(y) dy

+ξ2
ε,iβ

2
∫
Ω

(
1

2π
log

1

|P ε
i − ξ| − H0(P

ε
i , ξ)

)
w2(

ξ − P ε
i

ε
)χε,P ε

i
(ξ) dξ

+
∑
j �=i

(
1

|Ω| + β2G0(P
ε
i , P

ε
j )

)
ξ2
ε,jε

2
∫

R2
w2(y) dy +

K∑
j=1

ξ2
ε,j(O(β2ε4) + O(β4ε2))

= ξ2
ε,i

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,i

β2

2π
ε2 log

1

ε

∫
R2

w2(y) dy

+ξ2
ε,iβ

2ε2

(
1

2π

∫
R2

w2(y) log
1

|y| dy − H0(P
ε
i , P

ε
i )

∫
R2

w2(y) dy

)

+
∑
j �=i

(
1

|Ω| + β2G0(P
ε
i , P

ε
j ))ξ2

ε,jε
2

∫
R2

w2(y) dy +
K∑

j=1

ξ2
ε,j(O(β2ε4) + O(β4ε2)).

(2.6)

Recall that H0 ∈ C2(Ω̄ × Ω).

Considering only the leading terms in (2.6) we get following

ξε,i =
K∑

j=1

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,i

β2

2π
ε2 log

1

ε

∫
R2

w2(y) dy

+
K∑

j=1

ξ2
ε,jO(β2ε2). (2.7)
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Recall from (1.22) that

ξε,i = ξεξ̂ε,i, where ξε =
|Ω|

ε2
∫
R2 w2

.

Then from (2.7) we get

ξε,i =

(
1

|Ω| +
ηε

|Ω|
)

ξ2
ε,iε

2
∫

R2
w2(y) dy+

∑
j �=i

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy+

K∑
j=1

ξ2
ε,jO(β2ε2),

where ηε was introduced in (1.1). Assuming that

ξ̂ε,i → ξ̂i, ηε → η0, (2.8)

we obtain the following system of algebraic equations

ξ̂i =
K∑

j=1

ξ̂2
j + ξ̂2

i η0, i = 1, . . . , K. (2.9)

We will solve (2.9) in the next section.

3. Analyzing the algebraic system (2.9)

In this section, we completely determine the solutions of ξ̂i, i = 1, ..., K for

the algebraic system (2.9). To this end, set

ρ(t) = t − η0t
2. (3.1)

Then (2.9) is equivalent to

ρ(ξ̂i) =
K∑

j=1

ξ̂2
j , i = 1, ..., K (3.2)

which implies that

ρ(ξ̂i) = ρ(ξ̂j) for i �= j. (3.3)

That is

(ξ̂i − ξ̂j)(1 − η0(ξ̂i + ξ̂j)) = 0. (3.4)

Hence for i �= j we have

ξ̂i − ξ̂j = 0 or ξ̂i + ξ̂j =
1

η0

. (3.5)

The case of symmetric solutions (ξ̂i = ξ̂1, i = 2, ..., N) has been studied in

[42]. Let us now consider asymmetric solutions, i.e., we assume that there
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exists an i ∈ {2, ..., N} such that ξ̂i �= ξ̂1. Without loss of generality, let us

assume that

ξ̂2 �= ξ̂1,

which implies that

ξ̂1 + ξ̂2 =
1

η0

. (3.6)

Let us calculate ξ̂j, j = 3, . . . , K. If ξ̂j �= ξ̂1, then by (3.5), ξ̂j + ξ̂1 = 1
η0

,

which implies that ξ̂j = ξ̂2.

Thus for j ≥ 3, we have either ξ̂j = ξ̂1 or ξ̂j = ξ̂2.

Let k1 be the number of ξ̂1’s in {ξ̂1, . . . , ξ̂K} and k2 be the number of ξ̂2’s

in {ξ̂1, . . . , ξ̂K}. Then we have k1 ≥ 1, k2 ≥ 1, k1 + k2 = K.

This gives

ξ̂1 − η0ξ̂1

2
=

K∑
j=1

ξ̂2
j = k1ξ̂

2
1 + k2ξ̂

2
2 , (3.7)

ξ̂2 =
1

η0

− ξ̂1. (3.8)

Substituting (3.8) into (3.7), we obtain

ξ̂1 − η0ξ̂
2
1 = k1ξ̂

2
1 + k2

(
1

η0

− ξ̂1

)2

and therefore

(k1 + k2 + η0)ξ̂
2
1 −

2k2 + η0

η0

ξ̂1 +
k2

η2
0

= 0. (3.9)

Equation (3.9) has a solution if and only if

(2k2 + η0)
2 ≥ 4k2(k1 + k2 + η0). (3.10)

The strict inequality of (3.10) is equivalent to (1.12).

It is easy to see that if (1.12) holds, then there are two different solutions

to (3.9) which are given by (ρ±, η±).

Therefore we arrive at the following conclusion.

Lemma 3.1. Let η0 > 2
√

k1k2. Then the solutions of (2.9) are given by

(ξ̂1, ..., ξ̂N ) ∈ ({ρ±, η±})K where the number of ρ′
±s is k1 and the number of

η′
±s is k2.
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If η0 > 2
√

k1k2, there exist two solutions (ρ±, η±).

If η0 = 2
√

k1k2, there exists one solution (ρ±, ρ±).

If η0 < 2
√

k1k2, there are no solutions (ρ±, ρ±).

In general, if η0 > K, then η2
0 > 4k1k2 for all k1, k2 such that k1 +k2 = K,

k1 ≥ 1, k2 ≥ 1 since 4k1k2 ≤ (k1 + k2)
2 = K2. Hence if η0 > K there exist

2 · 2K−2 = 2K−1 solutions to (2.9).

From now on, let us assume that (1.12) holds and we fix the heights

(ξ̂1, ξ̂2, . . . , ξ̂K) given by Lemma 3.1.

4. Preliminaries II: The Study of a Nonlocal Eigenvalue

Problem (NLEP)

In this section, we consider the following nonlocal eigenvalue problem

(NLEP):

Lφ := ∆φ − φ + 2wφ − f(τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2),
(4.1)

where f is a continuous complex function with f(α) real for α real and

f(α) > 0 for α > 0. Further, τ ≥ 0 is fixed.

We first recall the following well-known result

Lemma 4.1. Let

L0 = ∆ − 1 + 2w, φ ∈ H2(R2). (4.2)

The eigenvalue problem

L0φ = µφ, φ ∈ H2(R2), (4.3)

admits the following set of eigenvalues

µ1 > 0, µ2 = µ3 = 0, µ4 < 0, ... . (4.4)

The eigenfunction Φ0 corresponding to µ1 can be made positive and radially

symmetric; the space of eigenfunctions corresponding to the eigenvalue 0 is

K0 := span

{
∂w

∂yj

, j = 1, 2

}
. (4.5)
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Proof: This lemma follows from Theorem 2.1 of [19] and Lemma C of

[25]. �

Theorem 4.2. If f(0) < 1, then for all τ ≥ 0 there exists a positive real

eigenvalue of (4.1).

Proof: By arguments similar to [5] or [43], we may assume that φ is a radially

symmetric function, namely, φ ∈ H2
r (R2) = {u ∈ H2(R2)|u = u(|y|)}. Let

L0 be given by (4.2). Then, by Lemma 4.1, L0 is invertible in H2
r (R2). Let

us denote the inverse by L−1
0 . By Lemma 4.1, L0 has a unique positive real

eigenvalue µ1 with eigenfunction Φ0. It is easy to see that λ0 �= µ1 since∫
R2 wΦ0 > 0.

Then λ0 is an eigenvalue of (4.1) if and only if

(L0 − λ0)φ = f(τλ0)

∫
wφ∫
w2

w2.

By the invertibility of L0 − λ0, this holds if and only if

φ = f(τλ0)

∫
wφ∫
w2

(L0 − λ0)
−1w2. (4.6)

Note that (4.6) says that φ must be a multiple of (L0 − λ0)
−1w2. Multiply-

ing (4.6) on both sides by w and integrating over R2 shows that λ0 is an

eigenvalue if and only if it satisfies the following agebraic equation:∫
R2

w2 = f(τλ0)
∫

R2
[((L0 − λ0)

−1w2)w]. (4.7)

(Here we have used the fact that
∫

wφ �= 0. Otherwise φ = Φ0 and λ0 = µ1,

a contradiction). Now, using the relation

(L0 − λ0)
−1w2 = w + λ0(L0 − λ0)

−1w,

it follows that equation (4.7) is equivalent to the following:

ρ(λ0) := (1 − f(τλ0))
∫

R2
w2 − λ0f(τλ0)

∫
R2

[((L0 − λ0)
−1w)w] = 0.

(4.8)

Note that ρ(0) = (1 − f(0))
∫
R2 w2 > 0 by assumption. Then, as λ0 →

µ1, λ0 < µ1, we have
∫
R2((L0 − λ0)

−1w)w → +∞ and hence ρ(λ0) → −∞.

By continuity, there exists an λ0 ∈ (0, µ1) such that ρ(λ0) = 0. This positive

real number λ0 is an eigenvalue of (4.1).

�
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Now we need the following lemma:

Lemma 4.3. Consider the eigenvalue problem

∆φ − φ + 2wφ − γ

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (4.9)

where w is the unique solution of (1.7) and γ is real.

(1) If γ > 1, there exists a positive constant c0 such that Re(λ0) ≤ −c0 for

any nonzero eigenvalue λ0 of (4.9).

(2) If γ < 1, there exists a positive eigenvalue λ0 of (4.9).

(3) If γ �= 1 and λ0 = 0, then φ ∈ span { ∂w
∂y1

, ∂w
∂y2

}.
(4) If γ = 1 and λ0 = 0, then φ ∈ span {w, ∂w

∂y1
, ∂w

∂y2
}.

Proof: (1), (3) and (4) have been proved in Theorem 5.1 of [34]. (2) follows

from Theorem 4.2. �
With the help of Lemma 4.3, we can prove the following.

Theorem 4.4. If limτλ→+∞ f(τλ) := f+∞ < 1, there exists a positive real

eigenvalue of (4.1) for τ > 0 large enough.

Proof:

By Lemma 4.3 (2), problem (4.1) with µ = f∞ has a positive real eigen-

value α1. Now by perturbation arguments (similar to those in [5]), for τ large

enough, problem (4.1) has an eigenvalue near α1 > 0. This implies that for

τ large enough, problem (4.1) is unstable.

�
Finally, we consider the case f(0) > 1 for τ small.

Theorem 4.5. Suppose that f(0) > 1 and |f(z)| ≤ C for all z with Re(z) ≥
−δ. Then for τ small, there exists a positive constant c0 such that Re(λ0) ≤
−c0 for any nonzero eigenvalue λ0 of (4.1).

Proof: Although this follows from a standard perturbation argument, using

(1) of Lemma 4.3, we give a different proof here as it will give us an explicit

upper bound on how small c0 and τ must be to obtain stability.
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We apply the following inequality (Lemma 5.1 in [34]): for any (real func-

tion) φ ∈ H2
r (R2), we have∫

R2
(|∇φ|2 + φ2 − 2wφ2) + 2

∫
R2 wφ

∫
R2 w2φ∫

R2 w2
−

∫
R2 w3

(
∫
R2 w2)2

(
∫

R2
wφ)2 ≥ 0,

(4.10)

where equality holds if and only if φ is a multiple of w.

Now let φ = φR +
√−1φI be an eigenfunction of (4.1) such that the

corresponding eigenvalue λ satisfies Re(λ) ≤ −c0. Then we have

L0φ − f(τλ)

∫
R2 wφ∫
R2 w2

w2 = λφ. (4.11)

Multiplying (4.11) by φ̄ — the conjugate function of φ — and integrating

over R2, we obtain that∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2) = −λ
∫

R2
|φ|2 − f(τλ)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄.
(4.12)

Multiplying (4.11) by w and integrating over R2, we obtain that∫
R2

w2φ = (λ + f(τλ)

∫
R2 w3∫
R2 w2

)
∫

R2
wφ. (4.13)

Hence ∫
R2

w2φ̄ = (λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

)
∫

R2
wφ̄. (4.14)

Substituting (4.14) into (4.12), we have that∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2) = −λ
∫

R2
|φ|2 − f(τλ)(λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

)
| ∫R2 wφ|2∫

R2 w2
.

(4.15)

To study the real part λR of λ, we just need to consider the real part of

(4.15). Now, applying the inequality (4.10) and using (4.14), we arrive at

−λR ≥ Re(f(τλ)(λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

)) − 2Re(λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

) +

∫
R2 w3∫
R2 w2

.

Assuming that λR ≥ −c0, we have∫
R2 w3∫
R2 w2

|f(τλ) − 1|2 + Re(λ̄(f(τλ) − 1)) ≤ c0. (4.16)

On the other hand, since |f(τλ)| ≤ C for some constant C > 0, (4.15)

implies that |λ| ≤ C (independent of τ).
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Therefore for τ small, (4.16) implies that

−2c0(f(0) − 1) ≤ Re(λ̄(f(τλ) − 1))

−1

2

∫
R2 w3∫
R2 w2

(f(0) − 1)2 + c0

for τ small enough. This gives a contradiction if we choose c0 <

∫
R2 w3∫
R2 w2

(f(0)−1)2

4f(0)−2

and if τ is small enough. This finishes the proof. The inequality (4.16) may

also be used to get an explicit bound on τ .

�

5. Existence I: Reduction to finite dimensions

Let us begin with the proof of Theorem 1.1.

In this section, we use the Liapunov-Schmidt method to reduce the prob-

lem of finding an equilibrium state to a finite-dimensional problem. We shall

follow Section 4 of [42] and give a sketch of the proof.

Motivated by the results in Section 2, we rescale

x = εy, x ∈ Ω, y ∈ Ωε = {y|εy ∈ Ω}, (5.1)

Â(y) =
1

ξε

A(εy),

Ĥ(x) =
1

ξε

H(x), x ∈ Ω,

where ξε is given by (1.22). Then an equilibrium solution (Â, Ĥ) has to solve

the following rescaled Gierer-Meinhardt system:⎧⎨
⎩

∆yÂ − Â + Â2

Ĥ
= 0, y ∈ Ωε,

∆xĤ − β2Ĥ + β2ξεÂ
2 = 0, x ∈ Ω.

(5.2)

(This rescaling is chosen to achieve Â = O(1), Ĥ = O(1) in L∞(Ω).)

For a function Â ∈ H1(Ωε), let T [Â] be the unique solution of the following

problem

∆T [Â] − β2T [Â] + β2ξεÂ
2 = 0 in Ω,

∂T [Â]

∂ν
= 0 on ∂Ω. (5.3)

which is equivalent to

T [Â](x) =
∫
Ω

Gβ(x, ξ)β2ξεÂ
2(

ξ

ε
) dξ, (5.4)
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where Gβ is defined in (2.1).

System (5.2) is equivalent to the following equation in operator form:

Sε(Â, Ĥ) =

⎛
⎝ S1(Â, Ĥ)

S2(Â, Ĥ)

⎞
⎠ = 0, H2

N(Ωε) × H2
N(Ω) → L2(Ωε) × L2(Ω),

(5.5)

where

S1(Â, Ĥ) = ∆yÂ − Â +
Â2

Ĥ
: H2

N(Ωε) × H2
N(Ω) → L2(Ωε),

S2(Â, Ĥ) = ∆xĤ − β2Ĥ + β2ξεÂ
2 : H2

N(Ωε) × H2
N(Ω) → L2(Ω).

Here the index N indicates that the functions satisfy the Neumann boundary

conditions
∂Â

∂ν
= 0, y on ∂Ωε,

∂Ĥ

∂ν
= 0, x on ∂Ω.

Let P = (P1, ..., PK) =∈ Λδ and j = 1, ..., K. Then we define

wε,j(y) := w(y − Pj

ε
)χε,Pj

(εy), y ∈ Ωε, (5.6)

where w is the unique solution of (1.7) and χε,Pj
is defined in (2.3).

We choose our approximate solution (Â, Ĥ) as follows:

Aε,P(y) :=
K∑

i=1

ξ̂ε,iwε,i(y), Hε,P(x) := T [Aε,P](x), x = εy ∈ Ω.
(5.7)

Note that Hε,P satisfies

0 = ∆xHε,P − β2Hε,P + β2ξεA
2
ε,P

= ∆xHε,P − β2Hε,P + β2ξε

K∑
j=1

ξ̂2
ε,jw

2
ε,j + e.s.t.

Hence

Hε,P(Pj) = β2ξε

∫
Ω

Gβ(x, ξ)
K∑

j=1

ξ̂2
ε,jw

2
ε,j(

ξ

ε
) dξ + e.s.t.

Similar to the computation in Section 2 (using the definition (1.22) of ξε),

we obtain

Hε,P(Pj) = ξ̂ε,j) + O

(
1

log 1
ε

)
, j = 1, ..., K. (5.8)

We substitute (5.7) into (5.5) and calculate

S2(Aε,P, Hε,P) = 0, (5.9)
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S1(Aε,P, Hε,P) = ∆yAε,P − Aε,P +
A2

ε,P

Hε,P

=
K∑

i=1

[
ξ̂ε,i∆yw

(
y − Pi

ε

)
− ξ̂ε,iw

(
y − Pi

ε

)]

+
K∑

i=1

ξ̂2
ε,iw

2
(
y − Pi

ε

)
H−1

ε,P + e.s.t.

=
K∑

i=1

w2
(
y − Pi

ε

)
ξ̂ε,i(ξ̂ε,iH

−1
ε,P − 1) + e.s.t.

=
K∑

i=1

w2
(
y − Pi

ε

)
ξ̂ε,i(ξ̂ε,iHε,P(Pi)

−1 − 1)

+
K∑

i=1

w2
(
y − Pi

ε

)
ξ̂2
ε,i(Hε,P(x)−1 − Hε,P(Pi)

−1) + e.s.t.
(5.10)

Now we compute for i = 1, ..., K and x = Pi + εz, |εz| < δ:

Hε,P(Pi + εz) − Hε,P(Pi)

= β2
∫
Ω
[Gβ(Pi + εz, ξ) − Gβ(Pi, ξ)]ξεA

2
ε,Pdξ

= β2ξε

∫
Ω
[G0(Pi + εz, ξ) − G0(Pi, ξ) + O(β2ε|z|)]A2

ε,Pdξ (by (2.2))

= β2ξε

∫
Ω
[G0(Pi + εz, ξ) − G0(Pi, ξ) + O(β2ε|z|)]

K∑
j=1

ξ̂2
ε,jw

2
ε,jdξ (by (5.7))

= β2ξε

∫
Ω
[G0(Pi + εz, ξ) − G0(Pi, ξ) + O(β2ε|z|)]ξ̂2

ε,iw
2
ε,idξ

+β2ξε

∫
Ω
[G0(Pi + εz, ξ) − G0(Pi, ξ) + O(β2ε|z|)] ∑

j �=i

ξ̂2
ε,jw

2
ε,jdξ

= β2ε2ξεξ̂
2
ε,i

∫
R2

1

2π
[log |ρ| − log |z − ρ|]w2(ρ)dρ

− β2ε2ξε(ξ̂ε,i)
−2

2∑
k=1

1

2

∂F (P)

∂Pi,k

εzk

∫
R2

w2 + O(β4ε3ξε|z|),
(5.11)

where ερ = ξ − Pi, |ερ| < δ, and F is defined in (1.20). Here we have used

the expansions

G0(Pi + εz, ξ) − G0(Pi, ξ)

=
1

2π

(
log

1

|Pi + εz − ξ| − log
1

|Pi − ξ|
)
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−H0(Pi + εz, ξ) + H0(Pi, ξ) (by (1.19))

=
1

2π

(
log

1

ε|ρ − z| − log
1

ε|ρ|
)

−H0(Pi + εz, Pi + ερ) + H0(Pi, Pi + ερ)

=
1

2π
log

|ρ|
|ρ − z| − ε∇P H0(P,Q)|P=Q=Pi

· z + O(ε2),

=
1

2π
log

|ρ|
|ρ − z| −

1

2
ε∇P H0(P, P )|P=Pi

· z + O(ε2),

where ερ = ξ − Pi, |ερ| < δ, and

G0(Pi + εz, ξ) − G0(Pi, ξ)

= G0(Pi + εz, Pj + ερ) − G0(Pi, Pj + ερ)

= ε∇P G0(P, Pj)|P=Pi
· z + O(ε2),

=
1

2
ε∇P (G0(P, Pj)|P=Pi

+ G0(Pj, P )|P=Pi
) · z + O(ε2),

where ερ = ξ − Pj, |ερ| < δ, and i �= j. Substituting (5.11) into (5.10), we

have the following key estimate

Lemma 5.1. For x = Pj + εz, |εz| < δ, we have the decomposition

S1(Aε,P, Hε,P) = S1,1 + S1,2, (5.12)

where

S1,1(z) = β2ε2ξε(Hε,Pj
(Pj))

−2(
∫

R2
w2)w2(z)

(
ε

2
∇Pj

F (P) · z + O(β2ε|z|)
)

(5.13)

and

S1,2(z) = β2ε2ξεw
2(z)Rj(|z|) + O(β4ε3ξε|z|), (5.14)

where S1,2(|z|) is a radially symmetric function with the property that Rj(|z|) =

O(log(1 + |z|)).
Furthermore, S1(Aε,P, Hε,P) = e.s.t. for |x − Pj| ≥ δ, j = 1, 2, ..., K.

Now we study the linearized operator defined by

L̃ε,P := S ′
ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠ ,

L̃ε,P : H2
N(Ωε) × H2

N(Ω) → L2(Ωε) × L2(Ω),

where ε > 0 is small and P ∈ Λδ.
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Set

Kε,P := span

{
∂Aε,P

∂Pj,l

|j = 1, . . . , K, l = 1, 2

}
⊂ H2

N(Ωε)

and

Cε,P := span

{
∂Aε,P

∂Pj,l

|j = 1, . . . , K, l = 1, . . . , N

}
⊂ L2(Ωε).

Note that L̃ε,P is not uniformly invertible in ε due to the approximate kernel

Kε,P := Kε,P ⊕ {0} ⊂ H2
N(Ωε) × H2

N(Ω).

We choose the approximate cokernel as follows:

Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε) × L2(Ω).

We then define

K⊥
ε,P := K⊥

ε,P ⊕ H2
N(Ω) ⊂ H2

N(Ωε) × H2
N(Ω),

C⊥
ε,P := C⊥

ε,P ⊕ L2(Ω) ⊂ L2(Ωε) × L2(Ω),

where C⊥
ε,P and K⊥

ε,P denote the orthogonal complement with the scalar prod-

uct of L2(Ωε) in H2
N(Ωε) and L2(Ωε), respectively.

Let πε,P denote the projection in L2(Ωε) × L2(Ω) onto C⊥
ε,P. (Here the

second component of the projection is the identity map.) We are going to

show that the equation

πε,P ◦ Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ = 0

has the unique solution Σε,P =

⎛
⎝ Φε,P(y)

Ψε,P(x)

⎞
⎠ ∈ K⊥

ε,P if ε is small enough.

Set

Lε,P = πε,P ◦ L̃ε,P : K⊥
ε,P → C⊥

ε,P. (5.15)

As a preparation, in the following two propositions we show the invertibil-

ity of the corresponding linearized operator Lε,P.

Proposition 5.2. Assume that (T1) of Theorem 1.1 holds. Let Lε,P be given

by (5.15). There exist positive constants ε, C with C indendent of ε such that
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for all ε ∈ (0, ε)

‖Lε,PΣ‖L2(Ωε)×L2(Ω) ≥ C‖Σ‖H2(Ωε)×H2(Ω) (5.16)

for arbitrary P ∈ Λδ, Σ ∈ K⊥
ε,P.

Proposition 5.3. Assume that (T1) of Theorem 1.1 holds. There exists a

positive constant ε such that for all ε ∈ (0, ε) the map

Lε,P = πε,P ◦ L̃ε,P : K⊥
ε,P → C⊥

ε,P

is surjective for arbitrary P ∈ Λδ.

The proofs of Propositions 5.2 and 5.3 are similar to that of Appendix

A in [42]. A key point is to show that the operator L̃ε,P has exactly a

2K-dimensional kernel. The condition (T1) of Theorem 1.1 is vital since it

implies that the limiting operator L has exactly a 2K-dimensional kernel (see

Lemma 7.2 below). Then by Liapunov-Schmidt reduction the same holds for

L̃ε,P. For the sake of limited space we omit the details.

�
If condition (T1) does not hold, then either Liapunov-Schmidt reduction

fails or we have to change the dimension of the kernel and cokernel, re-

spectively, to make it work. It seems that further conditions are needed to

distinguish what happens.

Now we are in a position to solve the equation

πε,P ◦ Sε

⎛
⎝ Aε,P + φ

Hε,P + ψ

⎞
⎠ = 0. (5.17)

Since Lε,P|K⊥
ε,P

is invertible (call the inverse L−1
ε,P), we can rewrite

Σ = −(L−1
ε,P ◦ πε,P)

⎛
⎝Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

⎞
⎠ − (L−1

ε,P ◦ πε,P)(Nε,P(Σ)) ≡ Mε,P(Σ),
(5.18)

where

Nε,P(Σ) = Sε

⎛
⎝ Aε,P + φ

Hε,P + ψ

⎞
⎠ − Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠ − S ′

ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

⎡
⎣ φ

ψ

⎤
⎦ ,



26 JUNCHENG WEI AND MATTHIAS WINTER

and the operator Mε,P is defined by (5.18) for Σ = (φ, ψ) ∈ H2
N(Ωε)×H2(Ω).

We are going to show that the operator Mε,P is a contraction on

Bε,δ ≡ {Σ ∈ H2(Ωε) × H2(Ω)|‖Σ‖H2(Ωε)×H2(Ω) < δ}
if δ is small enough. By Lemma 5.1 we have

‖S1(Aε,P, Hε,P)‖H2(Ωε) ≤ C
1

log 1
ε

. (5.19)

Using (5.19) and the Propositions 5.2 and 5.3 we get

‖Mε,P(Σ)‖H2(Ωε)×H2(Ω) ≤ λ−1(‖πε,P ◦ Nε,P(Σ)‖L2(Ωε)×L2(Ω)

+

∥∥∥∥∥∥πε,P ◦ Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

∥∥∥∥∥∥
L2(Ωε)×L2(Ω)

)

≤ λ−1C(c(δ)δ +
1

log 1
ε

),

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we

show

‖Mε,P(Σ) − Mε,P(Σ′)‖H2(Ωε)×H2(Ω) ≤ λ−1c(δ)‖Σ − Σ′‖H2(Ωε)×H2(Ω),

where c(δ) → 0 as δ → 0. If we choose δ small enough, then Mε,P is a

contraction mapping on Bε,δ. The existence of a fixed point Σε,P for Mε,P

plus an error estimate now follows from the Contraction Mapping Principle

and Σε,P is a solution of (5.18).

We have thus proved

Lemma 5.4. There exist an ε > 0 such that for every pair ε, β, P with

0 < ε < ε, P ∈ Λδ there exists a unique (Φε,P, Ψε,P) ∈ K⊥
ε,P satisfying

Sε

⎛
⎝

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠

⎞
⎠ ∈ Cε,P and

‖(Φε,P, Ψε,P)‖H2(Ωε)×H2(Ω) ≤ C
1

log 1
ε

. (5.20)

More refined estimates for Φε,P are needed. We recall from Lemma 5.1

that S1 can be decomposed into the two parts S1,1 and S1,2, where S1,1

is in leading order an odd function and S1,2 is in leading order a radially

symmetric function. Similarly, we can decompose Φε,P:
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Lemma 5.5. Let Φε,P be defined in Lemma 5.4. Then for x = Pi + εz,

|εz| < δ, we have the decomposition

Φε,P = Φε,P,1 + Φε,P,2, (5.21)

where Φε,P,2 is a radially symmetric function in z which satisfies

Φε,P,2 = O

(
1

log 1
ε

)
in H2

N(Ωε). (5.22)

and

Φε,P,1 = O

(
ε

log 1
ε

)
in H2

N(Ωε). (5.23)

Proof: Let S[v] := S1(v, T [v]). We first solve

S[Aε,P + Φε,P,2] − S[Aε,P] +
K∑

j=1

S1,2(y − Pj

ε
) ∈ Cε,P, (5.24)

for Φε,P,2 ∈ K⊥
ε,P.

Then we solve

S[Aε,P + Φε,P,2 + Φε,P,1] − S[Aε,P + Φε,P,2] +
K∑

j=1

S1,1(y − Pj

ε
) ∈ Cε,P,

(5.25)

for Φε,P,1 ∈ K⊥
ε,P.

Using the same proof as in Lemma 5.4, both equations (5.24) and (5.25)

have unique solutions for ε << 1. By uniqueness, Φε,P = Φε,P,1 + Φε,P,2.

Since S1,1 = S0
1,1 + S⊥

1,1, where ‖S0
1,1‖H2(Ωε) = O

(
ε

log 1
ε

)
and S⊥

1,1 ∈ C⊥
ε,P, it is

easy to see that Φε,P,1 and Φε,P,2 have the required properties.

�

6. Existence II: The reduced problem

In this section, we solve the reduced problem and complete the proof of

Theorem 1.1.

Let P0 ∈ Λδ be a nondegenerate critical point of F (P).

By Lemma 5.4, if we choose δ small enough, for each P ∈ Bδ(P
0), there

exists a unique solution (Φε,P, ψε,P) ∈ K⊥
ε,P such that

Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ =

⎛
⎝ vε,P

0

⎞
⎠ ∈ Cε,P.
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Now we are going to find a P = Pε ∈ Bδ(P
0) such that

Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ ⊥ Cε,P. (6.26)

For P ∈ Λδ let

Wε,j,i(P) := log
1

ε

∫
Ωε

(S1(Aε,P + Φε,P, Hε,P + Ψε,P)
∂Aε,P

∂Pj,i

),
(6.27)

j = 1, ..., K, i = 1, 2,

Wε(P) := (Wε,1,1(P), ...,Wε,K,2(P)). (6.28)

Note that Wε(P) is a map which is continuous in P and our problem is

reduced to finding a zero of the vector field Wε(P).

Let

Ωε,Pj
= {y|εy + Pj ∈ Ω}. (6.29)

We calculate the asymptotic expansion of Wε,j,i(P):

log
1

ε

∫
Ωε

S1(Aε,P + Φε,P, Hε,P + Ψε,P)
∂Aε,P

∂Pj,i

= log
1

ε

∫
Ωε

[
∆(Aε,P + Φε,P) − (Aε,P + Φε,P) +

(Aε,P + Φε,P)2

Hε,P + Ψε,P

]
∂Aε,P

∂Pj,i

= log
1

ε

∫
Ωε

[
∆(Aε,P + Φε,P) − (Aε,P + Φε,P) +

(Aε,P + Φε,P)2

Hε,P

]
∂Aε,P

∂Pj,i

+ log
1

ε

∫
Ωε

[
(Aε,P + Φε,P)2

Hε,P + Ψε,P

− (Aε,P + Φε,P)2

Hε,P

]
∂Aε,P

∂Pj,i

= I1 + I2,

where I1 and I2 are defined by the last equality.

For I1, we have by Lemma 5.5,

I1 = log
1

ε

( ∫
Ωε

[
∆(Aε,P + Φε,P) − (Aε,P + Φε,P) +

(Aε,P + Φε,P)2

Hε,P(Pj)

]
∂Aε,P

∂Pj,i

−
∫
Ωε

(Aε,P + Φε,P)2

(Hε,P(Pj))2
(Hε,P − Hε,P(Pj))

∂Aε,P

∂Pj,i

)
+ o(1)

= ε−1 log
1

ε

(
−

∫
Ωε,Pj

[∆(ξ̂ε,jwε,j+Φε,P)−(ξ̂ε,jwε,j+Φε,P)+
(ξ̂ε,jwε,j + Φε,P)2

Hε,P(Pj)
]
ξ̂ε,j∂wε,j

∂yi
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+
∫
Ωε,Pj

(ξ̂ε,jwε,j + Φε,P,2)
2(y)

(Hε,P(Pj))2
(Hε,P(Pj+εy)−Hε,P(Pj))

ξ̂ε,j∂wε,j(y)

∂yi

dy
)
+o(1).

Note that, by Lemma 5.5,∫
Ωε,Pj

[∆Φε,P − Φε,P + 2wε,jΦε,P]
∂wε,j

∂yi

=
∫
Ωε,Pj

Φε,P,1
∂

∂yi

[∆w − w + w2] + o

(
ε

log 1
ε

)
= o

(
ε

log 1
ε

)
,

(6.30)

∫
Ωε,Pj

(Φε,P)2∂wε,j

∂yi

=
∫
Ωε,Pj

(Φε,P,1)
2 ∂wε,j

∂yi

+ o

(
ε

log 1
ε

)
= o

(
ε

log 1
ε

)
.
(6.31)

Now, by (5.11), (6.30) and (6.31),

I1 = o(1)−ε−1 log
1

ε
(ξ̂ε,j)

3(Hε,P(Pj))
−2

∫
Ωε,Pj

w2
ε,j(y)(Hε,P(Pj+εy)−Hε,P(Pj))

∂wε,j(y)

∂yi

dy

= o(1) + πη0ξ̂ε,j(Hε,P(Pj))
−2

2∑
k=1

∂F (P)

∂Pj,k

∫
R2

w2yk
∂w

∂yi

= o(1) + πη0ξ̂ε,j(Hε,P(Pj))
−2∂F (P)

∂Pj,i

∫
R2

w2yi
∂w

∂yi

= o(1) − πη0

3
ξ̂ε,j(Hε,P(Pj))

−2
∫

R2
w3∂F (P)

∂Pj,i

,
∂F (P)

∂Pj,i

= o(1) − πη0

3
(ξ̂ε,j)

−1
∫

R2
w3∂F (P)

∂Pj,i

(by (2.4)), (6.32)

where η0 and ξ have been defined in (1.2) and (1.22), respectively.

Similarly, we compute for I2:

I2 = log
1

ε

∫
Ωε

[
(Aε,P + Φε,P)2

Hε,P + Ψε,P

− (Aε,P + Φε,P)2

Hε,P

]
∂Aε,P

∂Pj,i

= − log
1

ε

∫
Ωε

(Aε,P + Φε,P)2

H2
ε,P

Ψε,P
∂Aε,P

∂Pj,i

+ o(1)

= −ε−1 log
1

ε
ξ̂3
ε,j(Hε,P(Pj))

−2
∫
Ωε,Pj

1

3

∂w3
ε,j

∂yi

(Ψε,P − Ψε,P(Pj)) + o(1).
(6.33)

Recall that Ψε,P satisfies

∆Ψε,P − β2Ψε,P + 2β2ξεAε,PΦε,P + β2ξεΦ
2
ε,P = 0.
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Using Lemma 5.5, similar computations as those leading to (5.11) show

that

Ψε,P(Pj + εy) − Ψε,P(Pj)

=
∫
Ω
(Gβ(Pj + εy, ξ) − Gβ(Pj, ξ))β

2ξε(2Aε,P(
ξ

ε
)Φε,P(

ξ

ε
) + Φ2

ε,P(
ξ

ε
))dξ

= o

(
ε

log 1
ε

|∇Pj
F (P)| |y|

)
+

1

log 1
ε

Ra(|y|), (6.34)

where Ra(|y|) is a radially symmetric function.

Substituting (6.34) into (6.33), we obtain that

I2 = o(1) uniformly in Λδ. (6.35)

Combining the estimates for I1 and I2, we obtain

Wε(P) = −πη0

6
D−1∇PF (P) + Eε(P), (6.36)

where the matrix D is defined by

(D)ij = ξ̂ε,jδij, (6.37)

δij the Kronecker symbol, and Eε(P) = o(1) is a continuous function of P

which goes to 0 as ε → 0 uniformly in Λδ. Note that the matrix D is strictly

positive definite.

At P0, we have ∇P|P=P0F (P0) = 0, det(∇2
P|P=P0(F (P)) �= 0. Therefore,

for ε small enough and δ = δ(ε) → 0 as ε → 0 but so slowly that Wε has

exactly one zero in Bδ(P
0) (which is possible by (6.36)), we compute the

mapping degree of Wε(P) for the set Bδ and the value 0 as follows:

deg(Wε, 0, Bδ) = sign det(−D−1∇2
P|P=P0(F (P))

= sign det(−D−1M(P0)) �= 0

by condition (T2) in Theorem 1.1. Therefore, standard degree theory implies

that for ε small enough, there exists a Pε ∈ Bδ such that Wε(P
ε) = 0 and,

by (6.36), we have Pε → P0.

Thus we have proved the following proposition.

Proposition 6.1. For ε sufficiently small, there exist points Pε with Pε →
P0 such that Wε(P

ε) = 0.
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Now we complete the proof of Theorem 1.1.

Proof of Theorem 1.1: By Proposition 6.1, there exists Pε → P0 such

that Wε(P
ε) = 0. In other words, S1(Aε,Pε + Φε,Pε , Hε,Pε + Ψε,Pε) = 0.

Let Aε = ξε(Aε,Pε + Φε,Pε), Hε = ξε(Hε,Pε + Ψε,Pε). It is easy to see that

Hε = ξεT [Aε,Pε + Φε,Pε ] > 0. Hence Aε ≥ 0. By the Maximum Principle,

Aε > 0. Therefore (Aε, Hε) satisfies Theorem 1.1.

�

7. Stability Analysis I: Large Eigenvalues

We consider the stability of the steady state (Aε, Hε) constructed in The-

orem 1.1.

Linearizing around the equilibrium states⎧⎨
⎩ A = Aε + φε(x)eλεt,

H = Hε + ψε(x)eλεt,

and substituting the result into (GM) we deduce the following eigenvalue

problem ⎧⎪⎨
⎪⎩

∆yφε − φε + 2Aε

Hε
φε − A2

ε

H2
ε
ψε = λεφε,

1
β2 ∆ψε − ψε + 2Aεφε = τλεψε.

(7.1)

Here D = 1
β2 , λε is some complex number and

φε ∈ H2
N(Ωε), ψε ∈ H2

N(Ω). (7.2)

In this section, we study the large eigenvalues, i.e., we assume that |λε| ≥
c > 0 for ε small. Furthermore, we may assume that (1 + τ)c < 1

2
. If

Re(λε) ≤ −c, we are done. (Then λε is a stable large eigenvalue.) Therefore

we may assume that Re(λε) ≥ −c and for a subsequence ε → 0, λε → λ0 �= 0.

We shall derive the limiting eigenvalue problem which are NLEPs.

The key references are Theorem 4.2, Theorem 4.4, and Theorem 4.5.

The second equation in (7.1) is equivalent to

∆ψε − β2(1 + τλε)ψε + 2β2Aεφε = 0. (7.3)

We introduce the following:

βλε = β
√

1 + τλε, (7.4)
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where in
√

1 + τλε we take the principal part of the square root. (This

means that the real part of
√

1 + τλε is positive, which is possible since

Re (1 + τλε) ≥ 1
2
.)

Let us assume that

‖φε‖H2(Ωε) = 1. (7.5)

We cut off φε as follows: Introduce

φε,j(y) = φε(y)χε,P ε
j
(εy), (7.6)

where χε,P ε
j
(x) is given by (2.3).

From (7.1) using Lemma 5.4, the fact that Re(λε) ≥ −c, the asymptotic

expansion of Aε, given in Theorem 1.1, and the exponential decay of w (see

(1.8)), it follows that

φε =
K∑

j=1

φε,j + e.s.t. in H2(Ωε). (7.7)

Then by a standard procedure we extend φε,j to a function defined on R2

such that

‖φε,j‖H2(R2) ≤ C‖φε,j‖H2(Ωε), j = 1, . . . , K.

Since ‖φε‖H2(Ωε) = 1, ‖φε,j‖H2(R2) ≤ C. By taking a subsequence of ε, we

may also assume that φε,j → φj as ε → 0 in H1 for j = 1, . . . , K, strongly

on compact subsets of R2. Therefore, we also have

wφε,j → wφj as ε → 0, strongly in L∞(R2). (7.8)

We have by (7.3)

ψε(x) = 2β2
∫
Ω

Gβλε
(x, ξ)Aε(

ξ

ε
)φε(

ξ

ε
) dξ. (7.9)

Now we use the expansion of Aε and the definitions of ξε and ξ̂ε,i which

are given in Theorem 1.1. At x = P ε
i , i = 1, . . . , K, we calculate

ψε(P
ε
i ) = 2β2

∫
Ω

Gβλε
(P ε

i , ξ)
K∑

j=1

ξεξ̂ε,jw(
ξ − P ε

j

ε
)φε,j(

ξ

ε
) dξ + e.s.t.

= 2β2
∫
Ω
(
(βλε)

−2

|Ω| +G0(P
ε
i , ξ)+O(|βλε |2))

K∑
j=1

ξεξ̂ε,jw(
ξ − P ε

j

ε
)φε,j(

ξ

ε
) dξ+e.s.t.
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= 2
∫
Ω
(

1

|Ω|(1 + τλε)
+ β2G0(P

ε
i , ξ) + O(|βλε |4))ξεξ̂ε,iw(

x − P ε
i

ε
)φε,i(

ξ

ε
) dξ

+2
∑
j �=i

∫
Ω
(

1

|Ω|(1 + τλε)
+ β2G0(P

ε
i , P

ε
j ) + O(|βλε |4))ξεξ̂ε,jw(

ξ − P ε
j

ε
)φε,j(

ξ

ε
) dξ

=

⎛
⎝2

K∑
j=1

1

|Ω|(1 + τλε)
ξεε

2ξ̂ε,j

∫
R2

w(y)φε,j(y) dy

+ 2ξεξ̂ε,i
β2

2π
ε2 log

1

ε

∫
R2

w(y)φε,i(y) dy + O(|βλε|2ξεε
2)

⎞
⎠ (by (1.18)).

(7.10)

We get from (7.10) together with (1.1) and (1.2), (7.8), and since ξε,i →
ξi, i = 1, ..., K by Theorem 1.1,

ψε(P
ε
i ) =

⎛
⎝2

K∑
j=1

1

|Ω|(1 + τλ0)
ξεξ̂ε,jε

2
∫

R2
wφε,j + 2ξεξ̂ε,i

η0

|Ω|ε
2

∫
R2

wφε,i

⎞
⎠ (1 + o(1)).

(7.11)

Substituting (7.11) into the first equation of (7.1) and letting ε → 0, we

obtain the following nonlocal eigenvalue problem (NLEP):

∆φi − φi + 2wφi − 2

1 + τλ0

K∑
j=1

ξ̂j

∫
wφj∫
w2

− 2η0ξ̂i

∫
wφi∫
w2

w2 = λ0φi, i = 1, ..., K.
(7.12)

Let

Φ =

⎛
⎜⎜⎜⎝

φ1

...

φK

⎞
⎟⎟⎟⎠ .

Then we can rewrite (7.12) in matrix form:

∆Φ − Φ + 2wΦ − 2
∫
R2 wBΦ∫
R2 w2

w2 = λ0Φ, (7.13)

where

B =

⎛
⎜⎜⎜⎝

η0ξ̂1

. . .

η0ξ̂K

⎞
⎟⎟⎟⎠ +

1

1 + τλ0

⎛
⎜⎜⎜⎝

ξ̂1 . . . ξ̂K

...
...

ξ̂1 . . . ξ̂K

⎞
⎟⎟⎟⎠

(7.14)

Note that in general B is not self-adjoint since λ0 ∈ C.

Let us now compute the eigenvalues of B in two special cases. We claim

that
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Lemma 7.1. Let (ξ̂1, ..., ξ̂K) be given by Lemma 3.1. Then the eigenvalues

of B are solutions of the following quadratic equation

k1ρ

η0ρ − λ
+

k2η

η0η − λ
+ 1 + τλ0 = 0, (7.15)

where ρ and η are given by (1.16). In particular, if τ = 0, then the eigen-

values of B are given by

λ1 = 1, λ2 = k1ρ + k2η. (7.16)

If τ = +∞, then the eigenvalues of B are given by

λ1 = η0ρ, λ2 = η0η. (7.17)

Proof: Let q = (q1, . . . , qK)T be an eigenvector of B with eigenvalue λ.

Then we have

Bq = λq. (7.18)

Writing (7.18) in components, we have

η0ξ̂iqi +
1

1 + τλ0

N∑
j=1

qj ξ̂j = λqi, i = 1, . . . , K.

Hence, we have

(η0ξ̂i − λ)qi = − 1

1 + τλ0

N∑
j=1

qj ξ̂j = c, (7.19)

qi =
c

η0ξ̂i − λ
. (7.20)

Substituting (7.20) into (7.19), we obtain that

K∑
j=1

ξ̂j

η0ξ̂j − λ
+ 1 + τλ0 = 0. (7.21)

Using (1.16), this can be re-written as

k1ρ

η0ρ − λ
+

k2η

η0η − λ
+ 1 + τλ0 = 0,

which is exactly (7.15).

When τ = 0, using the fact that ρ + η = 1
η0

, we obtain the following

λ2 − λ(k1ρ + k2η + 1) + η0(K + η0)ρη = 0 (7.22)

The two roots of (7.22) are given by (7.16).
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Next, for τ = +∞, B is diagonal and the result is trivial.

�
By choosing a basis for RK so B is diagonal, we see that the eigenvalue

problem (7.13) can be reduced to the study of the following two nonlocal

eigenvalue problems

∆Φi − Φi + 2wΦi − 2λi

∫
R2 wΦi∫

R2 w2
w2 = λ0Φi, i = 1, 2, Φi ∈ H2(R2),

(7.23)

where λi are the two eigenvalues of B satisfying (7.15). We can study these

by using the results of Section 3.

When τ = 0, we have λ1 = 1, λ2 = k1ρ+k2η. The first eigenvalue causes no

difficulty in the stability of (7.23) by Theorem 4.5. For the second eigenvalue,

it is easy to compute that for (ρ, η) = (ρ±, η±),

2λ2 − 1 =
4k1k2 − η2

2 ± (k1 − k2)
√

η2
0 − 4k1k2

2η0(η0 + K)
. (7.24)

If η0 > K, we have

η2
0 > (k1 + k2)

2

and therefore

η2
0 − 4k1k2 > (k1 − k2)

2.

Thus

λ2 <
1

2
if η0 > K.

By Theorem 4.2, there exists a positive real eigenvalue λ0 > 0 of (7.23) for all

τ > 0. This, together with a perturbation argument of [5], implies instability

of (7.1) with respect to the O(1) eigenvalues.

However, in the case when 2
√

k1k2 < η0 ≤ K, if we choose k1 > k2, (ρ, η) =

(ρ+, η+), then λ2 > 1/2. Thus we have stability of (7.1) with respect to the

large eigenvalues, for τ small, by Theorem 4.5.

Finally, when τ = +∞, we have λ1 = η0ρ, λ2 = η0η. Then, since ρ+η = 1
η0

,

λ1 + λ2 = 1,

which implies that one of the λi must be less than 1
2

unless λ1 = λ2 = 1
2
.

In the latter case, ρ = η and ξ̂1 = ... = ξ̂K , which implies that (Aε, Hε) is a
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symmetric K–peaked solution. Since our solution is asymmetric, the latter

case can not happen.

Thus by Theorem 4.4, if τ is large enough, we must have the instability of

(7.23) and hence instability of (7.1) with respect to O(1) eigenvalues.

This finishes the proof of Theorem 1.2 in the large eigenvalue case.

In the next section we shall study the eigenvalues λε which tend to zero

as ε → 0.

Finally, we state a lemma which is vital for the Liapunov-Schmidt reduc-

tion process.

Lemma 7.2. Suppose that (T1) of Theorem 1.1 holds. Let

LΦ := ∆Φ − Φ + 2wΦ − 2
∫
R2 wBΦ∫
R2 w2

w2, Φ ∈ (H2(R2))K ,
(7.25)

where B is given by (7.14). Set

X0 := span

{
∂w

∂y1

,
∂w

∂y2

}
. (7.26)

Then

Ker(L) = X0 ⊕ X0 ⊕ · · · ⊕ X0 (7.27)

and

Ker(L∗) = X0 ⊕ X0 ⊕ · · · ⊕ X0. (7.28)

As a result, the operator

L : (H2(R2))K → (L2(R2))K

is invertible if it is restricted as follows

L : (X0 ⊕ · · · ⊕ X0)
⊥ ∩ (H2(R2))K → (X0 ⊕ · · · ⊕ X0)

⊥ ∩ (L2(R2))K .

Moreover, L−1 is bounded.

Proof: This follows from choosing a basis in RK so B is diagonal and using

(3) of Lemma 4.3. �
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8. Stability Analysis II: Small Eigenvalues

We now study (7.1) for small eigenvalues. Namely, we assume that λε → 0

as ε → 0. The analysis follows along the lines of [40] and [42]. We will show

that the small eigenvalues are related to the matrix M(P0) given in (1.21).

Let us assume that condition (*) of Theorem 1.2 holds true. That is,

all eigenvalues of the matrix M(P0) are negative. Our main result in this

section says that if λε → 0, then

λε ∼ ε2

log 1
ε

2πη0
1∫

R2 w2
σ0, (8.1)

where σ0 is an eigenvalue of D−1M(P0)D−2 and D is the diagonal, positive

definite matrix defined in (6.37). From (8.1), we see that all small eigenvalues

of Lε are stable, provided that condition (*) of Theorem 1.2 holds.

Again let (Aε, Hε) be the equilibrium state of (1.5). which has been rig-

orously constructed in Theorem 1.1 and let (Âε, Ĥε) be the rescaled solution

given by

Âε = ξ−1
ε Aε, Ĥε = ξ−1

ε Hε, (8.2)

where ξε is defined in (1.22).

We cut off Âε as follows:

Âε,j(y) = χε,P ε
j
(εy)Âε(y), j = 1, ..., K, (8.3)

where χε,P ε
j

is defined in (2.3).

Then it is easy to see that

Âε(y) =
K∑

j=1

Âε,j(y) + e.s.t. in H2(Ωε). (8.4)

We now give a formal argument which should motivate to the reader our

choice of decomposition of φε which will be given in (8.6) below. Later, in

Step 1 of the proof it will be shown that this choice gives the correct answer

in leading order.

Note that Ãε,j(y) ∼ ξ̂jw(y − P ε
j

ε
) in H2(Ωε) and Âε,j satisfies

∆yÂε,j − Âε,j +
(Âε,j)

2

Ĥε

+ e.s.t. = 0.
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Thus ∂Âε,j

∂yk
satisfies

∆y
∂Âε,j

∂yk

− ∂Âε,j

∂yk

+
2Âε,j

Ĥε

∂Âε,j

∂yk

− ε
(Âε,j)

2

Ĥ2
ε

∂Ĥε

∂xk

+ e.s.t. = 0,
(8.5)

and we have ∂Âε,j

∂yk
= ξ̂j(1 + o(1)) ∂w

∂yk
(y − P ε

j

ε
). We now decompose

φε =
K∑

j=1

2∑
k=1

aε
j,k

∂Âε,j

∂yk

+ φ⊥
ε (8.6)

with complex numbers aε
j,k, where

φ⊥
ε ⊥ K̃ε := span {∂Âε,j

∂yk

|j = 1, . . . , K, k = 1, 2} ⊂ H2
N(Ωε).

(8.7)

Our main idea is to show that this is a good choice since the error φ⊥
ε is

small and thus can be neglected (This is done in Step 1.) Then we obtain

algebraic equations for aε
j,k which are related to the matrix M(P0). (This is

done in Step 2.)

Accordingly, we decompose ψε

ψε(x) =
K∑

j=1

2∑
k=1

aε
j,kψε,j,k + ψ⊥

ε , (8.8)

where ψε,j,k is the unique solution of the problem

⎧⎪⎨
⎪⎩

1
β2 ∆xψε,j,k − (1 + τλε)ψε,j,k + 2ξεÂε,j

∂Âε,j

∂yk
= 0 in Ω,

∂ψε,j,k

∂ν
= 0 on ∂Ω, (8.9)

and ψ⊥
ε satisfies⎧⎨

⎩
1
β2 ∆xψ

⊥
ε − (1 + τλε)ψ

⊥
ε + 2ξεÂεφ

⊥
ε = 0 in Ω,

∂ψ⊥
ε

∂ν
= 0 on ∂Ω. (8.10)

Suppose that ‖φε‖H2(Ωε) = 1. Then |aε
j,k| ≤ C since

aε
j,k =

∫
Ωε

φε
∂Âε,j

∂yk

(ξ̂ε,j)2
∫
R2( ∂w

∂y1
)2

+ o(1).
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Substituting the decompositions of φε and ψε into the eigenvalue problem

(7.1) and using (8.5), we have

ε
K∑

j=1

2∑
k=1

aε
j,k

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
+ e.s.t.

+∆yφ
⊥
ε − φ⊥

ε + 2
Âε

Ĥε

φ⊥
ε − (Âε)

2

(Ĥε)2
ψ⊥

ε − λεφ
⊥
ε

= λε

K∑
j=1

2∑
k=1

aε
j,k

∂Âε,j

∂yk

in Ωε. (8.11)

Set

I3 := ε
K∑

j=1

2∑
k=1

aε
j,k

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
(8.12)

and

I4 := ∆yφ
⊥
ε − φ⊥

ε + 2
Âε

Ĥε

φ⊥
ε − (Âε)

2

(Ĥε)2
ψ⊥

ε − λεφ
⊥
ε . (8.13)

We divide our proof into two steps.

Step 1: Estimates for φ⊥
ε .

The main contribution of this step is to obtain good error bounds for φ⊥
ε .

We use equation (8.11). Since φ⊥
ε ⊥ K̃ε, then similar to the proof of

Proposition 5.2 it follows that

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I3‖L2(Ωε). (8.14)

Let us now compute I3.

Let ξε be the same as in Theorem 1.1. Then we calculate, using (2.2), that

for x ∈ Bδ(P
ε
l ):

∂Ĥε

∂xk

(x) = ξεβ
2

∫
Ω

∂

∂xk

Gβ(x, ξ)(Âε(
ξ

ε
))2 dξ

= ξεβ
2

⎡
⎣ ∫

Ω

∂

∂xk

(
1

2π
log

1

|x − ξ| − H0(x, ξ)

)
(Âε,l(

ξ

ε
))2 dξ

+
∫
Ω

∑
s �=l

∂

∂xk

G0(x, ξ)(Âε,s(
ξ

ε
))2 dξ + O(β2ε2)

⎤
⎦
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and

ψε,l,k(x) = 2β2ξε

∫
Ω

Gβλε
(x, z)Âε,l

∂Âε,l

∂yk

dz

= εξεβ
2

∫
Ω

(
1

2π
log

1

|x − ξ| − H0(x, ξ) + O(|βλε|2)
)

∂

∂ξk

(Âε,l)
2 dξ.

Thus, for x ∈ Bδ(P
ε
l ), we have

∂Ĥε

∂xk

(x) − 1

ε
ψε,l,k(x)

= ξεβ
2

⎡
⎣ (∫

Ω
[

∂

∂xk

1

2π
log

1

|x − ξ|(Âε,l(
ξ

ε
))2 − 1

2π
log

1

|x − ξ|
∂

∂ξk

(Âε,l(
ξ

ε
))2]dξ

)

−
∫
Ω
[

∂

∂xk

H0(x, ξ))(Âε,l(
ξ

ε
))2 − H0(x, ξ)

∂

∂ξk

(Âε,l(
ξ

ε
))2]dξ

+
∫
Ω

∑
s �=l

∂

∂xk

G0(x, ξ)(Âε,s(
ξ

ε
))2 dξ + O(ε2β2)

⎤
⎦.

Using the radial symmetry of 1
2π

log 1
|x| and integrating by parts, we get

∂Ĥε

∂xk

(x) − 1

ε
ψε,l,k(x)

= ε2ξεβ
2(ξ̂ε,l)

−2
∫

R2
w2(− ∂

∂xk

Fl(x) + o(ε)), (8.15)

where

Fl(x) = H0(x, P ε
l )ξ̂4

ε,l −
∑
j �=l

G0(x, P ε
j )ξ̂2

ε,j ξ̂
2
ε,l. (8.16)

Observe that
∂

∂xm

Fl(x)|x=P ε
l

= o(1)

since Pε → P0 and P0 is a critical point of F (P).

Hence, we have

‖I3‖L2(Ωε) = o

⎛
⎝ ε

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ (8.17)

and

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I3‖L2(Ωε) = o

⎛
⎝ ε

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ . (8.18)
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Using the equation (8.10) for ψ⊥
ε and (8.18), we obtain that

ψ⊥
ε (x) = o

⎛
⎝ ε

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ . (8.19)

We calculate, using (8.5) and (8.13),

∫
Ωε

(I4
∂Âε,l

∂ym

)dξ =
∫
Ωε

(
Â2

ε,l

H2
ε

(ε
∂Ĥε

∂xm

φ⊥
ε − ∂Âε,l

∂ym

ψ⊥
ε ))dξ − λε

∫
Ωε

φ⊥
ε

∂Âε,l

∂ym

=
∫
Ωε,Pε

l

Â2
ε,l

Ĥ2
ε

(ε
∂Ĥε

∂xm

(P ε
l + εy) − ε

∂Ĥε

∂xm

(P ε
l ))φ⊥

ε

+
∫
Ωε,Pε

l

Â2
ε,l

Ĥ2
ε

(ε
∂Ĥε

∂xm

(P ε
l ))φ⊥

ε

−
∫
Ωε,Pε

l

Â2
ε,l

Ĥ2
ε

∂Âε,l

∂ym

(ψ⊥
ε (P ε

l + εy) − ψ⊥
ε (P ε

l )))dξ

−λε

∫
Ωε

φ⊥
ε

∂Âε,l

∂ym

.

This implies, using (8.7), (8.18), (8.10), and the estimate

∂Ĥε

∂xm

= O(
1

log 1
ε

) in Ω,

that ∫
Ωε

(I4
∂Âε,l

∂ym

)dξ = o

⎛
⎝ ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ . (8.20)

Step 2: Algebraic equations for aε
j,k.

This step gives us algebraic equations for aε
j,k.

Multiplying both sides of (8.11) by
∂Âε,l

∂ym
and integrating over Ωε, we obtain

r.h.s. = λε

K∑
j=1

2∑
k=1

aε
j,k

∫
Ωε

∂Âε,j

∂yk

∂Âε,l

∂ym

= λε

K∑
j=1

2∑
k=1

aε
j,kδjlδkmξ̂ε,lξ̂ε,j

∫
R2

(
∂w

∂y1

)2

dy (1 + o(1))

= λεa
ε
l,mξ̂2

ε,l

∫
R2

(
∂w

∂y1

)2

dy(1 + o(1)).
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Now (8.20) gives

l.h.s. = ε
K∑

j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
∂Âε,l

∂ym

+
∫
Ωε

(I4
∂Âε,l

∂ym

)dξ

= ε
K∑

j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

(Âε,j)
2

(Ĥε)2

[
−1

ε
ψε,j,k +

∂Ĥε

∂xk

]
∂Âε,l

∂ym

+o

⎛
⎝ ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ . (8.21)

Using (8.15), we obtain

l.h.s. = ε3ξεβ
2

K∑
j=1

2∑
k=1

aε
j,k(ξ̂ε,j)

−2

×
∫
Ωε

(Âε,j)
2

(Ĥε)2
(− ∂

∂xk

Fj(x))
∂Âε,l

∂ym

∫
w2

+o

⎛
⎝ ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠

= ε4ξεβ
2ξ̂ε,l(ξ̂ε,j)

−2
∫

R2
w2 ∂w

∂ym

ym

∫
w2

K∑
j=1

2∑
k=1

aε
j,k

(
− ∂

∂P ε
l,m

∂

∂P ε
j,k

1

2
F (Pε)

)

+o

⎛
⎝ ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ . (8.22)

Note that ∫
R2

w2 ∂w

∂ym

ym = −1

3

∫
R2

w3

Thus we have

l.h.s. =
ε4ξεβ

2

6
ξ̂ε,l(ξ̂ε,j)

−2(
∫

R2
w3)(

∫
R2

w2)
K∑

j=1

2∑
k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)
(8.23)

+o

⎛
⎝ ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠ .

Combining the l.h.s. and r.h.s, we have

ε4ξεβ
2

6
ξ̂ε,l(ξ̂ε,j)

−2(
∫

R2
w3)(

∫
R2

w2)
K∑

j=1

2∑
k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)
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+o

⎛
⎝ ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|

⎞
⎠

= λεa
ε
l,mξ̂2

ε,l

∫
R2

(
∂w

∂y1

)2

dy(1 + o(1)). (8.24)

Letting ε → 0 in (8.24), we see that the small eigenvalues with λε → 0

satisfy |λε| ∼ ε4ξεβ
2. Furthermore,

λε

ε4ξεβ
→

∫
R2 w3

∫
R2 w2

6
∫
R2( ∂w

∂y1
)2dy

σ0

as ε → 0, where σ0 is an eigenvalue of the matrix D−1M(P0)D−2, D is given

by (6.37), and Pε → P0 as ε → 0. (The vector �aε = (aε
1,1, a

ε
1,2, ...., a

ε
K,2)

T

approaches an eigenvector of M(P0) corresponding to σ0.) By condition (*)

of Theorem 1.2, the matrix M(P0) is negative definite. Therefore, we have

Re (σ0) < 0 and it follows that Re(λε) < 0 if ε is small enough. Therefore

the small eigenvalues λε are stable for (7.1) if ε is small enough.

Completion of the proof of Theorem 1.2:

Theorem 1.2 now follows from Section 7 and Section 8.

�
Remark 8.1:

We have shown that the small eigenvalues with λ → 0 satisfy λε ∼ C ε2

log 1
ε

with some C > 0. Furthermore, asymptotically, they are eigenvalues of

the matrix D−1M(P0)D−2 and the coefficients aε
j,k are the corresponding

eigenvectors. If the matrix M(P0) = ∂2

∂P2 F (P)|P=P0 is strictly negative

definite, it follows that Re(λε) < 0 if ε is small enough.

An open question is whether or not a positive real eigenvalue of M(P0)

gives rise to a positive (small) eigenvalue λε for the system. Similar ques-

tions for singularly perturbed Neumann problem, where the role of M(P0) is

replaced by the mean curvature function, have been studied in [3] and [36].

The main difficulty for the full Gierer-Meinhardt system is that we do not

have a variational structure.

�
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