STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION

JUNCHENG WEI AND MATTHIAS WINTER

Abstract

We study the Cahn-Hilliard equation in a bounded domain without any symmetry assumptions. We assume that the mean curvature of the boundary has a nongenerate critical point. Then we show that there exists a spike-like stationary solution whose global maximum lies on the boundary. Our method is based on Lyapunov-Schmidt reduction and the Brouwer fixed-point theorem. Résumé. Nous étudions l'équation de Cahn et Hilliard dans une domaine ouverte sans supposer aucunes conditions de symétrie pour la domaine. Nous supposons que la courbature moyenne sur la frontière a un point critique non dégeneré. Nous montrons qu'il existe une solution stationnaire avec un pic qui atteint son maximum sur la frontière de la domaine. Notre méthode utilise la réduction de Lyapunov et Schmidt et le théorème du point fixe de Brouwer. (Titre: Solutions stationnaires pour l'équation de Cahn et Hilliard).

1. Introduction

The Cahn-Hilliard equation [5] is an accepted macroscopic field-theoretical model of processes such as phase separation in a binary alloy. In its original form it is derived from a Helmholtz free energy

$$
E(u)=\int_{\Omega}\left[F(u(x))+\frac{1}{2} \epsilon^{2}|\nabla u(x)|^{2}\right] d x
$$

where Ω is the region occupied by the body, $u(x)$ is a conserved order parameter representing for example the concentration of one of the components, and $F(u)$ is the free energy density which has a double well structure at low temperatures (see Figure 1). The most commonly used model is for $F(u)=\left(1-u^{2}\right)^{2}$.

The constant ϵ is proportional to the range of intermolecular forces and the gradient term is a contribution to the free energy coming from spatial

[^0]fluctuations of the order parameter. Moreover the mass $\bar{m}=\frac{1}{|\Omega|} \int_{\Omega} u d x$ is constant. Thus a stationary solution of $E(u)$ under $\bar{m}=\frac{1}{|\Omega|} \int_{\Omega} u d x$ takes the following form
\[

\left\{$$
\begin{array}{l}
\epsilon^{2} \Delta u-f(u)=\sigma_{\epsilon} \quad \text { in } \Omega \tag{1.1}\\
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega, \\
\int_{\Omega} u=\bar{m}|\Omega|
\end{array}
$$\right.
\]

where $f(u)=F^{\prime}(u)$ (see Figure 2) and σ_{ϵ} is a constant.
There have been numerous studies of the Cahn-Hilliard equation. The global minimizer of $E(u)$ has a transition layer. More precisely there exists an open set $\Gamma \subset \Omega$ such that u_{ϵ} is a global minimizer then $u_{\epsilon} \rightarrow 1$ on $\Omega \backslash \bar{\Gamma}, u_{\epsilon} \rightarrow-1$ on Γ and $\partial \Gamma \cap \bar{\Omega}$ is a minimal surface and has constant mean curvature, see [16]. The dynamics of the interface have been studied extensively, see for example [2], [3], [23]. Also local minimizers of $E(u)$ have been studied and their transition layer structure has been established in [6] and [13]. In particular, Chen and Kowalczyk in [6] used boundary mean curvature to construct local minimizers (therefore transition layer solutions) for equation (1.1).

In this paper we are concerned with solutions of (1.1) with spike layers. In the one dimensional case, Bates and Fife [4] studied nucleation phenomena for the Cahn-Hilliard equation and proved the existence of three monotone nondecreasing stationary solutions when \bar{m} is in the metastable region $(\sqrt{1 / 3}<\bar{m}<1)$, (a) the constant solution $u \equiv \bar{m}$, (b) a boundary spike layer solution where the layer is located at the left-hand endpoint, (c) a transition layer solution with a layer in the interior of the material.

Motivated by the results of [4], we shall construct a boundary spike layer solution to (1.1) for $\epsilon \ll 1$ in the higher dimensional case when \bar{m} is in the metastable region.

The existence of spike layer solutions as well as the location and the profile of the peaks for other problems arising in various models such as chemotaxis, pattern formation, chemical reactor theory, etc. have been studied by Lin, Ni, Pan, and Takagi $[14,17,18,19]$ for the Neumann problem and by Ni and Wei [20] for the Dirichlet problem. However, they do not have the volume constraint and the nonlinearity is simpler than here. To our knowledge the
present paper is the first to establish this kind of results for the Cahn-Hilliard equation in higher dimensions without any symmetry assumptions on Ω.

Naturally these stationary solutions are essential for the understanding of the dynamics of the corresponding evolution process. While Bates and Fife [4] prove some results in this direction for the one dimensional case these questions are open for higher dimensions.

In [11] in the one dimensional case the number of all stationary solutions is counted by arguments using transversality.

First we make the following transformation.

$$
\begin{gathered}
v=\bar{m}-u \\
g(v)=-f(\bar{m})+f(\bar{m}-v)
\end{gathered}
$$

Rewrite

$$
g^{\prime}(0)=-m, g(v)=-m v+h(v)
$$

Then equation (1.1) becomes

$$
\begin{cases}\epsilon^{2} \Delta v-m v+h(v)-\frac{1}{|\Omega|} \int_{\Omega} h(v)=0 & \text { in } \Omega \tag{1.2}\\ \frac{\partial v}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

(Figure 3 shows qualitatively how the graph of g looks like.)
To accommodate more general g we assume that
(1) $g^{\prime}(0)<0, g(0)=0, g \in C^{3}(R, R)$.
(2) $g(v)$ has only two zeroes for $v>0,0<a_{1}<a_{2}$ and

$$
\int_{0}^{a_{2}} g(s) d s>0, g^{\prime}\left(a_{2}\right)<0
$$

(3) The function $v \rightarrow \frac{g(v)}{v-v_{0}}$ is nonincreasing in the interval $\left(v_{0}, a_{2}\right)$ where v_{0} is defined as the unique number in $\left(a_{1}, a_{2}\right)$ such that $\int_{0}^{v_{0}} g(s) d s=0$.
(4) $\left|h^{\prime}(v)\right|,\left|h^{\prime \prime}(v)\right| \leq C$ for any v.

Remarks:

(1) Condition (3) can be weakened further. For example, the conditions in [7] will be enough since we just need the uniqueness and weak nondegeneracy of the ground state solutions of (1.3).
(2) Condition (4) is not a restriction physically since in the physical world v is always bounded. Hence we can modify h near infinity so that h satisfies (4).

It is easy to see that for $f(u)=-2 u\left(1-u^{2}\right)$ conditions (1), (2), (3), and (4) are satisfied. Our main result can be stated as follows.

Theorem 1.1. Let Ω be a bounded smooth domain in $R^{N}(N \geq 2)$ and $P_{0} \in \partial \Omega$ be such that $\nabla_{P_{0}} H\left(P_{0}\right)=0$ and $\left(\nabla_{P_{0}}^{2} H\left(P_{0}\right)\right) \neq 0$ where $H\left(P_{0}\right)$ is the mean curvature of $P_{0} \in \partial \Omega$ and $\nabla_{P_{0}}$ is the tangential derivative at P_{0}. Then for $\epsilon \ll 1$ there exists a solution v_{ϵ} of (1.2) such that $v_{\epsilon} \rightarrow 0$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash P_{0}\right), v_{\epsilon}$ has only one local (hence global) maximum point P_{ϵ} and $P_{\epsilon} \in \partial \Omega, P_{\epsilon} \rightarrow P_{0}, v_{\epsilon}\left(P_{\epsilon}\right) \rightarrow V(0)>0$. Moreover

$$
\epsilon^{-N}\left\{\int_{\Omega} \epsilon^{2}\left|\nabla v_{\epsilon}-\nabla V\left(\frac{x-P_{\epsilon}}{\epsilon}\right)\right|^{2}+\int_{\Omega}\left|v_{\epsilon}-V\left(\frac{x-P_{\epsilon}}{\epsilon}\right)\right|^{2}\right\} \rightarrow 0
$$

as $\epsilon \rightarrow 0$ where $V(y)$ is the unique solution of

$$
\left\{\begin{array}{l}
\Delta V-m V+h(V)=0 \tag{1.3}\\
V(0)=\max _{y \in R^{N}} V(y), V>0 \\
V(y) \rightarrow 0 \text { at } \infty
\end{array}\right.
$$

(By the results of [9] and [24], (1.3) has a unique radial solution).
The method of our construction evolves from that of [8], [21] and [22] on the semi-classical (i.e. for small parameter h) solution of the nonlinear Schrödinger equation

$$
\begin{equation*}
\frac{h^{2}}{2} \Delta U-(V-E) U+U^{p}=0 \tag{1.4}
\end{equation*}
$$

in R^{N} where V is a potential function and E is a real constant. The method of Lyapunov-Schmidt reduction was used in [8], [21] and [22] to construct solutions of (1.4) close to nondegenerate critical points of V for h sufficiently small.

Following the strategy of [8], [21] and [22] we shall construct a solution v_{ϵ} of (1.2) with maximum near a given nondegenerate critical point of the mean curvature P_{0} on $\partial \Omega$. Heuristically we rescale (1.2) to obtain

$$
\left\{\begin{array}{l}
\Delta u_{\epsilon}-m u_{\epsilon}+h\left(u_{\epsilon}\right)-\frac{1}{\left|\Omega_{\epsilon, P}\right|} \int_{\Omega_{\epsilon, P}} h\left(u_{\epsilon}\right)=0 \quad \text { in } \Omega_{\epsilon, P}, \tag{1.5}\\
\frac{\partial u_{\epsilon}}{\partial \nu_{\epsilon}}=0 \quad \text { on } \partial \Omega_{\epsilon, P}
\end{array}\right.
$$

where $u_{\epsilon}(z)=v_{\epsilon}(x)$ for $z=(x-P) / \epsilon, z \in \Omega_{\epsilon, P}$ and $\Omega_{\epsilon, P}=\left\{z \in R^{N} \mid \epsilon z+P \in\right.$ $\Omega\}$ and ν_{ϵ} is the unit outer normal to $\partial \Omega_{\epsilon, P}$.

Taking the limit $\epsilon \rightarrow 0, u_{\epsilon} \rightarrow V$ where V is the unique solution of

$$
\left\{\begin{array}{lc}
\Delta w-m w+h(w)=0 & \text { in } R_{+}^{N}, \tag{1.6}\\
w>0 & \text { in } R_{+}^{N}, \\
\frac{\partial w}{\partial y_{N}}=0 & \text { on } R^{N-1} \times\{0\}
\end{array}\right.
$$

with $V(0)=\max _{R_{+}^{N}} V$. Therefore the ground state solution V restricted to R_{+}^{N} can be an approximate solution for u_{ϵ}. Since the linearized problem arising from (1.6) has the $(N-1)$-dimensional kernel $\operatorname{span}\left\{\frac{\partial V}{\partial y_{1}}, \ldots, \frac{\partial V}{\partial y_{N-1}}\right\}$ we first "solve" (1.6) up to this kernel and then use the nondegeneracy of $H\left(P_{0}\right)$ to take care of the kernel separately.

The paper is organized as follows. Notation, preliminaries and some useful estimates are explained in Section 2. Section 3 contains the setup of our problem and we solve (1.2) up to approximate kernel and cokernel, respectively. Finally in Section 4 we solve the reduced problem.

Acknowledgement. The first author would like to thank Professor WeiMing Ni for his enlightening discussions. Part of the work is inspired by some related work by Professor Wei-Ming Ni and Professor Y.-G. Oh. This research was done while the second author visited the Department of Mathematics, The Chinese University of Hong Kong. It is supported by a Direct Grant from The Chinese University of Hong Kong and by a grant of the European Union (contract ERBCHBICT930744).

2. Technical Analysis

In this section we introduce a projection and derive some useful estimates. Throughout the paper we shall use the letter C to denote a generic positive constant which may vary from term to term. We denote $R_{+}^{N}=\left\{\left(x^{\prime}, x_{N}\right) \mid x_{N}>\right.$ $0\}$. Let V be the unique solution of (1.3).

Let $P \in \partial \Omega$. We can define a diffeomorphism straightening the boundary in a neighborhood of P. After rotation of the coordinate system we may assume that the inward normal to $\partial \Omega$ at P is pointing in the direction of the positive x_{N}-axis. Denote $x^{\prime}=\left(x_{1}, \ldots, x_{N-1}\right), B^{\prime}\left(R_{0}\right)=\left\{x^{\prime} \in R^{N-1}| | x^{\prime} \mid<\right.$ $\left.R_{0}\right\}$ and $\Omega_{1}=\Omega \cap B\left(P, R_{0}\right)=\left\{\left(x^{\prime}, x_{N}\right) \in B\left(P, R_{0}\right) \mid x_{N}-P_{N}>\rho\left(x^{\prime}-P^{\prime}\right)\right\}$ where $B\left(P, R_{0}\right)=\left\{x \in R^{N}|\quad| x-P \mid<R_{0}\right\}$. Then, since $\partial \Omega$ is smooth, we can find a constant $R_{0}>0$ such that $\partial \Omega \cap \overline{\Omega_{1}}$ can be represented by the
graph of a smooth function $\rho_{P}: B^{\prime}\left(R_{0}\right) \rightarrow R$ where $\rho_{P}(0)=0, \nabla \rho_{P}(0)=0$. From now on we omit the use of P in ρ_{P} and write ρ instead if this can be done without causing confusion. The sum of the principal curvatures of $\partial \Omega$ at P is $H(P)=\sum_{i=1}^{N-1} \rho_{i i}(0)$ where

$$
\rho_{i}=\frac{\partial \rho}{\partial x_{i}}, \quad i=1, \ldots, N-1
$$

and higher derivatives will be defined in the same way. By Taylor expansion we have

$$
\begin{gathered}
\rho\left(x^{\prime}-P^{\prime}\right)=\frac{1}{2} \sum_{i, j=1}^{N-1} \rho_{i j}(0)\left(x_{i}-P_{i}\right)\left(x_{j}-P_{j}\right) \\
+\frac{1}{6} \sum_{i, j, k=1}^{N-1} \rho_{i j k}(0)\left(x_{i}-P_{i}\right)\left(x_{j}-P_{j}\right)\left(x_{k}-P_{k}\right)+\mathcal{O}\left(\left|x^{\prime}-P^{\prime}\right|^{4}\right)
\end{gathered}
$$

In the following we use ρ_{α} to denote the multiple differentiation $\frac{\partial^{|\alpha|} \rho}{\partial x^{\alpha}}$, where α is a multiple index.

For $x \in \partial \Omega$, let $\nu(x)$ denote the unit outward normal at x and $\partial / \partial \nu$ the normal derivative. Let $\left(\tau_{1}(x), \ldots, \tau_{N-1}(x)\right)$ denote $(N-1)$ linearly independent tangential vectors and $\left(\frac{\partial}{\partial \tau_{1}}, . ., \frac{\partial}{\partial \tau_{n-1}}\right)$ the tangential derivatives.

In our coordinate system, for $x \in \omega_{1}:=\partial \Omega \cap B\left(P, R_{0}\right)$, we have

$$
\begin{gathered}
\nu(x)=\frac{1}{\sqrt{1+\left|\nabla_{x^{\prime}} \rho\right|^{2}}}\left(\nabla_{x^{\prime}} \rho,-1\right), \\
\frac{\partial}{\partial \nu}=\left.\frac{1}{\sqrt{1+\left|\nabla_{x^{\prime}} \rho\right|^{2}}}\left\{\sum_{j=1}^{N-1} \rho_{j} \frac{\partial}{\partial x_{j}}-\frac{\partial}{\partial x_{N}}\right\}\right|_{x_{N}-P_{N}=\rho\left(x^{\prime}-P^{\prime}\right)} \\
\frac{\partial}{\partial \tau_{i}}=\left.\frac{1}{\sqrt{1+\left|\nabla_{x^{\prime}} \rho\right|^{2}}}\left\{\frac{\partial}{\partial x_{i}}+\rho_{i} \frac{\partial}{\partial x_{N}}\right\}\right|_{x_{N}-P_{N}=\rho\left(x^{\prime}-P^{\prime}\right)}
\end{gathered}
$$

For a smooth bounded domain U we now introduce a projection P_{U} of $H^{2}(U)$ onto $\left\{v \in H^{2}(U) \mid \partial v / \partial \nu=0\right.$ at $\left.\partial U\right\}$ as follows: For $v \in H^{2}(U)$ let $w=P_{U} v$ be the unique solution of the boundary value problem

$$
\begin{cases}\Delta w-m w+h(v)=0 & \text { in } U \\ \frac{\partial w}{\partial \nu}=0 & \text { on } \partial U\end{cases}
$$

Let $h_{\epsilon, P}(x)=V\left(\frac{x-P}{\epsilon}\right)-P_{\Omega_{\epsilon, P}} V\left(\frac{x-P}{\epsilon}\right)$ where

$$
\Omega_{\epsilon, P}=\left\{z \in R^{n} \mid P+\epsilon z \in \Omega\right\} .
$$

Then $h_{\epsilon, P}$ satisfies

$$
\left\{\begin{array}{l}
\epsilon^{2} \Delta v-m v=0 \quad \text { in } \Omega \tag{2.1}\\
\frac{\partial v}{\partial \nu}=\frac{\partial V}{\partial \nu} \quad \text { on } \partial \Omega
\end{array}\right.
$$

We denote

$$
\|v\|_{\epsilon}^{2}=\epsilon^{-N} \int_{\Omega}\left[\epsilon^{2}|\nabla v|^{2}+m v^{2}\right] .
$$

For $x \in \Omega_{1}$ set now

$$
\left\{\begin{array}{l}
\epsilon y^{\prime}=x^{\prime}-P^{\prime} \tag{2.2}\\
\epsilon y_{N}=x_{N}-P_{N}-\rho\left(x^{\prime}-P^{\prime}\right)
\end{array}\right.
$$

Furthermore, for $x \in \Omega_{1}$ we introduce the transformation

$$
\begin{cases}T_{i}\left(x^{\prime}\right)=x_{i}, & i=1, \ldots, N-1 \tag{2.3}\\ T_{N}\left(x^{\prime}\right)=x_{N}-P_{N}-\rho\left(x^{\prime}-P^{\prime}\right) . & \end{cases}
$$

Note that then

$$
y=\frac{1}{\epsilon} T(x) .
$$

The Laplace operator and the boundary derivative operator become

$$
\begin{gather*}
\epsilon^{2} \Delta_{x}=\Delta_{y}+\left|\nabla_{x^{\prime}} \rho\right|^{2} \frac{\partial^{2}}{\partial y_{N}^{2}}-2 \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2}}{\partial y_{i} \partial y_{N}}-\epsilon \Delta_{x^{\prime}} \rho \frac{\partial}{\partial y_{N}} \quad \text { for } x \in \Omega_{1}, \tag{2.4}\\
\sqrt{1+\left|\nabla_{x^{\prime}} \rho\right|^{2}} \frac{\partial}{\partial \nu_{x}}=\frac{1}{\epsilon}\left\{\sum_{j=1}^{N-1} \rho_{j} \frac{\partial}{\partial y_{j}}-\left(1+\left|\nabla_{x^{\prime}} \rho\right|^{2}\right) \frac{\partial}{\partial y_{N}}\right\} \quad \text { for } x \in \omega_{1} . \tag{2.5}
\end{gather*}
$$

Let v_{1} be the unique solution of

$$
\left\{\begin{array}{l}
\Delta v-m v=0 \quad \text { in } R_{+}^{N} \tag{2.6}\\
\frac{\partial v}{\partial y_{N}}=-\frac{V^{\prime}}{|y|} \frac{1}{2} \sum_{i, j=1}^{N-1} \rho_{i j}(0) y_{i} y_{j}
\end{array} \quad \text { on } \partial R_{+}^{N}\right.
$$

where V^{\prime} is the radial derivative of V, i.e. $V^{\prime}=V_{r}(r)$, and $r=\left|\frac{x-P}{\epsilon}\right|$. Let v_{2} be the unique solution of

$$
\begin{cases}\Delta v-m v-2 \sum_{i, j=1}^{N-1} \rho_{i j}(0) y_{i} \frac{\partial^{2} v_{1}}{\partial y_{j} \partial y_{N}}=0 & \text { in } R_{+}^{N}, \tag{2.7}\\ \frac{\partial v}{\partial y_{N}}=\sum_{i, j=1}^{N-1} \rho_{i j}(0) y_{i} \frac{\partial v_{1}}{\partial y_{j}} & \text { on } \partial R_{+}^{N} .\end{cases}
$$

Let v_{3} be the unique solution of

$$
\left\{\begin{array}{l}
\Delta v-m v=0 \quad \text { in } R_{+}^{N} \tag{2.8}\\
\frac{\partial v}{\partial y_{N}}=-\frac{V^{\prime}}{|y|} \frac{1}{3} \sum_{i, j, k=1}^{N-1} \rho_{i j k}(0) y_{i} y_{j} y_{k} \quad \text { on } \partial R_{+}^{N}
\end{array}\right.
$$

Note that v_{1}, v_{2} are even functions in $y^{\prime}=\left(y_{1}, \ldots, y_{N-1}\right)$ and v_{3} is an odd function in $y^{\prime}=\left(y_{1}, \ldots, y_{N-1}\right)$ (i.e. $v_{1}\left(y^{\prime}, y_{N}\right)=v_{1}\left(-y^{\prime}, y_{N}\right), v_{3}\left(y^{\prime}, y_{N}\right)=$ $\left.-v_{3}\left(-y^{\prime}, y_{N}\right)\right)$. Moreover, it is easy to see that $\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right| \leq C e^{-\mu|y|}$ for
some $0<\mu<\sqrt{m}$. Let $\chi(x)$ be a smooth cutoff function such that $\chi(x)=$ $1, x \in B\left(0, R_{0}-\delta\right)$ and $\chi(x)=0$ for $x \in B\left(0, R_{0}\right)^{C}$ (for a positive number б.) Set

$$
h_{\epsilon, P}(x)=\epsilon v_{1}(y) \chi(x-P)+\epsilon^{2}\left(v_{2}(y) \chi(x-P)+v_{3}(y) \chi(x-P)\right)+\epsilon^{3} \Psi_{\epsilon, P}(x) .
$$

Then we have

Proposition 2.1.

$$
\left\|\Psi_{\epsilon, P}\right\|_{\epsilon} \leq C
$$

To prove Proposition 2.1, we begin with
Lemma 2.2. Let u be a solution of

$$
\left\{\begin{array}{l}
\epsilon^{2} \Delta u-m u+f=0 \\
\frac{\partial u}{\partial \nu}=g \quad \text { on } \partial \Omega,
\end{array}\right.
$$

Assume that $\int_{\Omega}|f|^{2} \leq C \epsilon^{N}, \int_{\partial \Omega}|g|^{2} \leq C \epsilon^{N-1}$. Then

$$
\|u\|_{\epsilon} \leq C
$$

Proof: Multiplying the equation by u, we have

$$
\epsilon^{2} \int_{\Omega}|\nabla u|^{2}+m \int_{\Omega} u^{2}=\int_{\Omega} f u+\epsilon^{2} \int_{\partial \Omega} g u .
$$

Lemma 2.2 follows easily by the following interpolation inequality (the proof of it is delayed to Appendix A),

$$
\|u\|_{L^{2}\left(\partial \Omega_{\epsilon, P}\right)} \leq C\|u\|_{\epsilon}
$$

where $\Omega_{\epsilon, P}=\{z \mid x=P+\epsilon z \in \Omega\}$ for a fixed $P \in \partial \Omega$.
Proof of Proposition 2.1: We first compute the equation for $\Psi_{\epsilon, P}(x)$:

$$
\begin{aligned}
&-\epsilon^{2} \Delta \Psi_{\epsilon, P}(x)+m \Psi_{\epsilon, P}(x) \\
&= \frac{1}{\epsilon^{3}}\left[\epsilon^{2}\left\{\Delta_{x}\left(\epsilon v_{1} \chi+\epsilon^{2}\left(v_{2} \chi+v_{3} \chi\right)\right)\right\}-m \epsilon v_{1} \chi-m \epsilon^{2} v_{2} \chi-m \epsilon^{2} v_{3} \chi\right] \\
&= \frac{1}{\epsilon^{2}}\left[\left\{\Delta_{y} v_{1}+\left|\nabla_{x^{\prime}} \rho\right|^{2} \frac{\partial^{2} v_{1}}{\partial y_{N}^{2}}-2 \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2} v_{1}}{\partial y_{i} \partial y_{N}}-\epsilon \Delta_{x^{\prime}} \rho \frac{\partial v_{1}}{\partial y_{N}}-m v_{1}\right\} \chi\right. \\
&+\epsilon\left\{\Delta_{y} v_{2}+\left|\nabla_{x^{\prime}} \rho\right|^{2} \frac{\partial^{2} v_{2}}{\partial y_{N}^{2}}-2 \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2} v_{2}}{\partial y_{i} \partial y_{N}}-\epsilon \Delta_{x^{\prime}} \rho \frac{\partial v_{2}}{\partial y_{N}}-m v_{2}\right\} \chi \\
&+\epsilon\left\{\Delta_{y} v_{3}+\left|\nabla_{x^{\prime}} \rho\right|^{2} \frac{\partial^{2} v_{3}}{\partial y_{N}^{2}}-2 \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2} v_{3}}{\partial y_{i} \partial y_{N}}-\epsilon \Delta_{x^{\prime}} \rho \frac{\partial v_{3}}{\partial y_{N}}-m v_{3}\right\} \chi
\end{aligned}
$$

$$
\begin{gathered}
\left.+E_{\epsilon}(\chi)\right] \\
=\frac{1}{\epsilon^{2}}\left[\chi\left\{|\nabla \rho|^{2} \frac{\partial^{2} v_{1}}{\partial y_{N}^{2}}-\epsilon \Delta \rho \frac{\partial v_{1}}{\partial y_{N}}-2 \sum_{i, j=1}^{N-1}\left(\rho_{i}-\epsilon \rho_{i j}(0) y_{j}\right) \frac{\partial^{2} v_{1}}{\partial y_{i} \partial y_{N}}\right\}\right. \\
+\chi\left\{\epsilon|\nabla \rho|^{2} \frac{\partial^{2} v_{2}}{\partial y_{N}^{2}}-2 \epsilon \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2} v_{2}}{\partial y_{i} \partial y_{N}}-\epsilon^{2} \Delta \rho \frac{\partial v_{2}}{\partial y_{N}}\right\} \\
\left.+\chi\left\{\epsilon|\nabla \rho|^{2} \frac{\partial^{2} v_{3}}{\partial y_{N}^{2}}-2 \epsilon \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2} v_{3}}{\partial y_{i} \partial y_{N}}-\epsilon^{2} \Delta \rho \frac{\partial v_{3}}{\partial y_{N}}\right\}\right] \\
+\frac{1}{\epsilon^{2}} E_{\epsilon}(\chi) \\
=f_{\epsilon}
\end{gathered}
$$

where $E_{\epsilon}(\chi)$ denotes all the terms involving derivatives of χ. Since $\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right| \leq$ $\exp (-\mu|y|)$ for some $\mu<\sqrt{m}$ we have $f_{\epsilon} \in L^{2}\left(\Omega_{\epsilon, P}\right)$ and $\int_{\Omega_{\epsilon, P}} f_{\epsilon}^{2} \leq C$. On the other hand, for $x \in \partial \Omega$ it holds that

$$
\frac{\partial \Psi_{\epsilon, P}}{\partial \nu}(x)=\frac{1}{\epsilon^{3}}\left\{\frac{\partial V}{\partial \nu}-\epsilon \frac{\partial\left(v_{1} \chi\right)}{\partial \nu}-\epsilon^{2}\left(\frac{\partial\left(v_{2} \chi\right)}{\partial \nu}+\frac{\partial\left(v_{3} \chi\right)}{\partial \nu}\right)\right\} .
$$

Note that

$$
\begin{gathered}
\frac{\partial V}{\partial \nu} \sqrt{1+|\nabla \rho|^{2}}=V^{\prime} \frac{\langle x-P, \nu>}{\epsilon|x-P|} \sqrt{1+|\nabla \rho|^{2}} \\
=V^{\prime}\left(\frac{x-P}{\epsilon}\right) \frac{1}{\epsilon|x-P|}\left\{\frac{1}{2} \sum_{i, j=1}^{N-1} \rho_{i j}(0)\left(x_{i}-P_{i}\right)\left(x_{j}-P_{j}\right)\right. \\
\left.+\frac{1}{3} \sum_{i, j, k=1}^{N-1} \rho_{i j k}(0)\left(x_{i}-P_{i}\right)\left(x_{j}-P_{j}\right)\left(x_{k}-P_{k}\right)+\mathcal{O}\left(\left|x^{\prime}-P^{\prime}\right|^{4}\right)\right\} \\
=\frac{V^{\prime}(y)}{|y|}\left\{\frac{1}{2} \sum_{i, j=1}^{N-1} \rho_{i j}(0) y_{i} y_{j}+\frac{\epsilon}{3} \sum_{i, j, k=1}^{N-1} \rho_{i j k}(0) y_{i} y_{j} y_{k}\right\}+\mathcal{O}\left(\epsilon^{2} \exp (-\mu|z|)\right) .
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
& \sqrt{1+|\nabla \rho|^{2}} \frac{\partial v_{1}}{\partial \nu}=\frac{1}{\epsilon}\left\{\sum_{k=1}^{N-1} \rho_{k} \frac{\partial v_{1}}{\partial y_{k}}-\left(1+|\nabla \rho|^{2}\right) \frac{\partial v_{1}}{\partial y_{N}}\right\} \\
& \epsilon \frac{\partial \Psi_{\epsilon, P}}{\partial \nu}(x)=\frac{1}{\sqrt{1+|\nabla \rho|^{2}} \epsilon^{2}} {\left[\frac{V^{\prime}}{|y|}\left\{\frac{1}{2} \sum_{i, j=1}^{N-1} \rho_{i j} y_{i} y_{j}+\frac{\epsilon}{3} \sum_{i, j, k=1}^{N-1} \rho_{i j k}(0) y_{i} y_{j} y_{k}\right\}\right.} \\
&+\mathcal{O}\left(\epsilon^{2}(\exp (-\mu|y|))\right)
\end{aligned}
$$

$$
\begin{gathered}
+\chi\left\{-\sum_{k=1}^{N-1} \rho_{k} \frac{\partial v_{1}}{\partial y_{k}}+\frac{\partial v_{1}}{\partial y_{N}}+|\nabla \rho|^{2} \frac{\partial v_{1}}{\partial y_{N}}\right. \\
-\epsilon \sum_{k=1}^{N-1} \rho_{k} \frac{\partial v_{2}}{\partial y_{k}}+\epsilon \frac{\partial v_{2}}{\partial y_{N}}+\epsilon|\nabla \rho|^{2} \frac{\partial v_{2}}{\partial y_{N}} \\
\left.\left.-\epsilon \sum_{k=1}^{N-1} \rho_{k} \frac{\partial v_{3}}{\partial y_{k}}+\epsilon \frac{\partial v_{3}}{\partial y_{N}}+|\nabla \rho|^{2} \frac{\partial v_{3}}{\partial y_{N}}\right\}+E_{\epsilon}(\chi)\right] \\
=g_{\epsilon}(y)
\end{gathered}
$$

where again $E_{\epsilon}(\chi)$ denotes all the terms involving derivatives of χ. This implies

$$
g_{\epsilon} \leq C \exp (-\mu|z|) \quad \text { for }\left|z^{\prime}\right| \leq \frac{R_{0}-\delta}{\epsilon}
$$

Therefore

$$
\left|\epsilon \frac{\partial \Psi_{\epsilon, P}}{\partial \nu}(x)\right| \leq C \exp (-\mu|z|) \quad \text { for } z=\frac{x-P}{\epsilon}
$$

Let $\tilde{\Psi}_{\epsilon, P}(z)=\Psi_{\epsilon, P}(x), x=P+\epsilon z$. Then $\tilde{\Psi}_{\epsilon, P}$ satisfies

$$
\begin{gathered}
\Delta \tilde{\Psi}_{\epsilon, P}-\tilde{\Psi}_{\epsilon, P}+f_{\epsilon}=0 \quad \text { in } \Omega_{\epsilon, P}, \\
\frac{\partial \tilde{\Psi}_{\epsilon, P}}{\partial \nu_{\epsilon}}=g_{\epsilon} \quad \text { on } \partial \Omega_{\epsilon, P}
\end{gathered}
$$

where $f_{\epsilon} \in L^{2}\left(\Omega_{\epsilon, P}\right), g_{\epsilon} \in L^{2}\left(\partial \Omega_{\epsilon, P}\right)$ and both the corresponding norms are bounded independent of ϵ. Hence by Lemma 2.2

$$
\left\|\Psi_{\epsilon, P}\right\|_{\epsilon} \leq C
$$

Therefore Proposition 2.1 is proved.

We next analyze $\partial / \partial \tau_{P_{j}} P_{\Omega_{\epsilon, P}} V\left(\frac{x-P}{\epsilon}\right)$. After choosing a suitable coordinate system we can assume that $\partial / \partial \tau_{P_{j}}=\partial / \partial P_{j}$. Then $\partial / \partial P_{j} h_{\epsilon, P}(x)$ satisfies

$$
\begin{array}{cr}
\epsilon^{2} \Delta v-m v=0 & \text { in } \Omega, \\
\frac{\partial v}{\partial \nu}=\frac{\partial}{\partial \nu} \frac{\partial}{\partial P_{j}} V\left(\frac{x-P}{\epsilon}\right) & \text { on } \partial \Omega .
\end{array}
$$

We compute

$$
\left(1+\left|\nabla_{x^{\prime}} \rho\right|^{2}\right) \frac{\partial}{\partial \nu} \frac{\partial}{\partial P_{j}} V\left(\frac{x-P}{\epsilon}\right)=\sum_{i=1}^{N-1} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial P_{j}} V\left(\frac{x-P}{\epsilon}\right) \rho_{i}
$$

$$
\begin{gathered}
-\frac{\partial}{\partial x_{N}} \frac{\partial}{\partial P_{j}} V\left(\frac{x-P}{\epsilon}\right) \\
=-\left[\sum_{i=1}^{N-1} \frac{\partial^{2} V}{\partial x_{i} \partial x_{j}}\left(\frac{x-P}{\epsilon}\right) \rho_{i}-\frac{\partial^{2} V}{\partial x_{N} \partial x_{j}}\left(\frac{x-P}{\epsilon}\right)\right] .
\end{gathered}
$$

Now we have (let $x=P+\epsilon z$)

$$
\begin{gathered}
\frac{\partial V}{\partial z_{j}}(z)=V^{\prime} \frac{z_{j}}{|z|}, \\
\frac{\partial^{2} V}{\partial z_{i} \partial z_{j}}=V^{\prime \prime} \frac{z_{i} z_{j}}{|z|^{2}}+V^{\prime}\left\{\frac{\delta_{i j}}{|z|}-\frac{z_{i} z_{j}}{|z|^{3}}\right\}, \\
\frac{\partial^{2} V((x-P) / \epsilon)}{\partial x_{N} \partial x_{j}}=\frac{1}{\epsilon^{2}}\left\{V^{\prime \prime} \frac{z_{j} \rho / \epsilon}{|z|^{2}}-V^{\prime} \frac{z_{j} \rho / \epsilon}{|z|^{3}}\right\} \\
=\left\{V^{\prime \prime} \frac{y_{j}}{|y|^{2}}-V^{\prime} \frac{y_{j}}{|y|^{3}}\right\} \frac{1}{\epsilon^{3}} \rho+\text { h.o.t., } \\
\frac{\partial^{2} V((x-P) / \epsilon)}{\partial x_{i} \partial x_{j}}=\frac{1}{\epsilon^{2}}\left\{V^{\prime \prime} \frac{z_{i} z_{j}}{|z|^{2}}+V^{\prime}\left\{\frac{\delta_{i j}}{|z|}-\frac{z_{i} z_{j}}{|z|^{3}}\right\}\right\} \rho_{i}, \\
-\left[\frac{1}{\epsilon^{2}}\left\{V^{\prime \prime} \frac{y_{i} y_{j}}{|y|^{2}}+V^{\prime}\left\{\frac{\delta_{i j}}{|y|}-\frac{y_{i} y_{j}}{|y|^{3}}\right\}\right\} \epsilon \sum_{k=1}^{N-1} \rho_{i k} y_{k}\right. \\
-\frac{\partial}{\partial P_{j}} V\left(\frac{x-P}{\epsilon}\right)= \\
\left.=\frac{1}{\epsilon^{3}}\left\{V^{\prime \prime} \frac{y_{j}}{|y|^{2}}-V^{\prime} \frac{y_{j}}{|y|^{3}}\right\} \frac{\epsilon^{2}}{2} \sum_{k, l=1}^{N-1} \rho_{k l} y_{k} y_{l}\right]+ \text { h.o.t.. } \\
\left.=\frac{1}{2} \sum_{k, l=1}^{N-1} \rho_{k l}\left(\frac{V^{\prime \prime}}{|y|^{2}}-\frac{V^{\prime}}{|y|^{3}}\right) y_{k} y_{j} y_{l}+\frac{V^{\prime}}{|y|} \sum_{k=1}^{N-1} \rho_{j k} y_{k}\right]+ \text { h.o.t.. }
\end{gathered}
$$

Let

$$
\left[\frac{\partial V}{\partial \tau_{P_{j}}}-\frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}\right]\left(\frac{x-P}{\epsilon}\right)=w_{1}(y) \chi(x-P)+\epsilon w_{2}^{\epsilon}(x)
$$

Here w_{1} is the unique solution of

$$
\left\{\begin{array}{l}
\Delta v-m v=0 \quad \text { in } R_{+}^{N}, \tag{2.9}\\
\frac{\partial v}{\partial y_{N}}=-\frac{1}{2}\left(\frac{V^{\prime \prime}}{|y|^{2}}-\frac{V^{\prime}}{|y|^{3}}\right) \sum_{k, l=1}^{N-1} \rho_{k l}(0) y_{k} y_{l} y_{j}-\frac{V^{\prime}}{|y|} \sum_{k=1}^{N-1} \rho_{j k}(0) y_{k} \text { on } \partial R_{+}^{N}
\end{array}\right.
$$

Note that $\left|w_{1}\right| \leq C \exp (-\mu|y|)$ for some $\mu<\sqrt{m}$ and w_{1} is an odd function in y^{\prime}. Then w_{2} satisfies

$$
\left\{\begin{array}{l}
\epsilon^{2} \Delta w_{2}-m w_{2}+\frac{1}{\epsilon}\left[\epsilon^{2} \Delta w_{1} \chi_{1}-w_{1} \chi_{1}\right]=0 \tag{2.10}\\
\frac{\partial w_{2}}{\partial \nu}=\frac{1}{\epsilon}\left(\frac{\partial}{\partial \nu} \frac{\partial V}{\partial \tau_{P_{j}}}-\frac{\partial}{\partial \nu}\left[w_{1}(y) \chi(x-P)\right]\right)
\end{array}\right.
$$

Note that $\left|w_{2}\right| \leq C \exp (-\mu|y|)$ for some $\mu<\sqrt{m}$. Similar to the proof of Proposition 2.1, we have

Proposition 2.3.

$$
\left[\frac{\partial V}{\partial \tau_{P_{j}}}-\frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}\right]\left(\frac{x-P}{\epsilon}\right)=w_{1}(y) \chi(x-P)+\epsilon w_{2}^{\epsilon}(x)
$$

where w_{1} is defined above and

$$
\left\|w_{2}^{\epsilon}\right\|_{\epsilon} \leq C
$$

Finally, let

$$
L_{0}=\Delta-m+h^{\prime}(V)
$$

We have
Lemma 2.4.

$$
\operatorname{Ker}\left(L_{0}\right) \cap H_{N}^{2}\left(R_{+}^{N}\right)=\operatorname{span}\left\{\frac{\partial V}{\partial y_{1}}, \ldots, \frac{\partial V}{\partial y_{N-1}}\right\} .
$$

where $H_{N}^{2}\left(R_{+}^{N}\right)=\left\{u \in H^{2}\left(R_{+}^{N}\right), \frac{\partial u}{\partial y_{N}}=0\right.$ on $\left.\partial R_{+}^{N}\right\}$.
Proof. See Lemma 4.2 in [19].

3. Reduction to finite dimensions

Let $P \in \Omega$ and

$$
\Omega_{\epsilon, P}=\left\{z \in R^{N} \mid \epsilon z+P \in \Omega\right\} .
$$

Let $H_{N}^{2}\left(\Omega_{\epsilon, P}\right)$ be a Hilbert space defined by

$$
H_{N}^{2}\left(\Omega_{\epsilon, P}\right)=\left\{u \in H^{2}\left(\Omega_{\epsilon, P}\right) \left\lvert\, \frac{\partial u}{\partial \nu_{\epsilon}}=0\right. \text { on } \partial \Omega_{\epsilon, P}\right\} .
$$

For $u \in H_{N}^{2}\left(\Omega_{\epsilon, P}\right)$, set

$$
S_{\epsilon}(u)=\Delta u-m u+h(u)-\frac{1}{|\Omega|} \int_{\Omega} h(u) .
$$

Then solving equation (1.2) is equivalent to

$$
S_{\epsilon}(u)=0, u \in H_{N}^{2}\left(\Omega_{\epsilon, P}\right)
$$

To this end, we first study the linearized operator

$$
\begin{gathered}
\tilde{L}_{\epsilon}: u(z) \mapsto \Delta u(z)-m u(z)+h^{\prime}\left(P_{\Omega_{\epsilon, P}} V(z)\right) u(z) \\
H_{N}^{2}\left(\Omega_{\epsilon, P}\right) \rightarrow L^{2}\left(\Omega_{\epsilon, P}\right)
\end{gathered}
$$

\tilde{L}_{ϵ} is not invertible due to the approximate kernel

$$
\mathcal{K}_{\epsilon, P}=\operatorname{span}\left\{\left.\frac{\partial P_{\Omega_{\epsilon, P}} V(z)}{\partial \tau_{P_{j}}} \right\rvert\, j=1, \ldots, N-1\right\}
$$

in $H_{N}^{2}\left(\Omega_{\epsilon, P}\right)$. It is easy to see (integration by parts) that the cokernel of \tilde{L}_{ϵ} coincides with its kernel. We choose approximate cokernel and kernel as follows:

$$
\mathcal{C}_{\epsilon, P}=\mathcal{K}_{\epsilon, P}=\operatorname{span}\left\{\left.\frac{\partial P_{\Omega_{\epsilon, P}} V(z)}{\partial \tau_{P_{j}}} \right\rvert\, j=1, \ldots, N-1\right\}
$$

Let $\pi_{\epsilon, P}$ denote the projection in $L^{2}\left(\Omega_{\epsilon, P}\right)$ onto $\mathcal{C}_{\epsilon, P}^{\perp}$. Our goal in this section is to show that the equation

$$
\pi_{\epsilon, P} \circ S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V+\Phi_{\epsilon, P}\right)=0
$$

has a unique solution $\Phi_{\epsilon, P} \in \mathcal{K}_{\epsilon, P}^{\perp}$ if ϵ is small enough.
As a preparation in the following two propositions we show invertibility of the corresponding linearized operator.

Proposition 3.1. Let $L_{\epsilon, P}=\pi_{\epsilon, P} \circ \tilde{L}_{\epsilon}$. There exist positive constants $\bar{\epsilon}, \lambda$ such that for all $\epsilon \in(0, \bar{\epsilon})$

$$
\begin{equation*}
\left\|L_{\epsilon, P} \Phi\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)} \geq \lambda\|\Phi\|_{H^{2}\left(\Omega_{\epsilon, P}\right)} \tag{3.1}
\end{equation*}
$$

for all $\Phi \in \mathcal{K}_{\epsilon, P}^{\perp}$.
Proposition 3.2. There exists a positive constant $\overline{\bar{\epsilon}}$ such that for all $\epsilon \in$ $(0, \overline{\bar{\epsilon}})$ and $P \in \partial \Omega$ the map

$$
L_{\epsilon, P}=\pi_{\epsilon, P} \circ \tilde{L}_{\epsilon}: \mathcal{K}_{\epsilon, P}^{\perp} \rightarrow \mathcal{C}_{\epsilon, P}^{\perp}
$$

is surjective.
Proof of Proposition 3.1: We will follow the method used in [8], [21] and [22]. Suppose that (3.1) is false. Then there exist sequences $\left\{\epsilon_{k}\right\},\left\{P_{k}\right\}$, and
$\left\{\Phi_{k}\right\}$ with $P_{k} \in \partial \Omega, \Phi_{k} \in \mathcal{K}_{\epsilon_{k}, P_{k}}^{\perp}$ such that

$$
\begin{align*}
& \left\|L_{\epsilon_{k}, P_{k}} \Phi_{k}\right\|_{L^{2}} \rightarrow 0, \tag{3.2}\\
& \left\|\Phi_{k}\right\|_{H^{2}}=1, \quad k=1,2, \ldots \tag{3.3}
\end{align*}
$$

We omit the argument $\Omega_{\epsilon_{k}, P_{k}}$ where this can be done without confusion. Denote

$$
e_{k, j}=\frac{\partial}{\partial \tau_{P_{j}}} P_{\Omega_{\epsilon, P}} V /\left\|\frac{\partial}{\partial \tau_{P_{j}}} P_{\Omega_{\epsilon, P}} V\right\|_{L^{2}}
$$

Note that

$$
<e_{k, i}, e_{k, j}>=\delta_{i j}+\mathcal{O}\left(\epsilon_{k}\right) \quad \text { as } k \rightarrow \infty
$$

by Proposition 2.3 and because of the symmetry of the function w_{1}, which was defined in (2.9), where $\delta_{i j}$ is the Kronecker symbol. Furthermore because of (3.2),

$$
\begin{equation*}
\left\|\tilde{L}_{\epsilon_{k}} \Phi_{k}\right\|_{L^{2}}^{2}-\sum_{j=1}^{N-1}\left(\int_{\Omega_{\epsilon_{k}, P_{k}}} \tilde{L}_{\epsilon_{k}} \Phi_{k} e_{k, j}\right)^{2} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

as $k \rightarrow \infty$. Let Ω_{1}, χ, ρ and T be as defined in Section 2. Then T has an inverse T^{-1} such that

$$
T^{-1}: T\left(B\left(P, R_{0}\right) \cap \bar{\Omega}\right) \rightarrow B\left(P, R_{0}\right) \cap \bar{\Omega}
$$

Recall that $\epsilon y=T(x)$. We introduce a new sequence $\left\{\varphi_{k}\right\}$ by

$$
\begin{equation*}
\varphi_{k}(y)=\chi\left(T^{-1}\left(\epsilon_{k} y\right)\right) \Phi_{k}\left(T^{-1}\left(\epsilon_{k} y\right)\right) \tag{3.5}
\end{equation*}
$$

for $y \in R_{+}^{N}$. Since T and T^{-1} have bounded derivatives it follows from (3.3) and the smoothness of χ that

$$
\left\|\varphi_{k}\right\|_{H^{2}\left(R_{+}^{N}\right)} \leq C
$$

for all k sufficiently large. Therefore there exists a subsequence, again denoted by $\left\{\varphi_{k}\right\}$ which converges weakly in $H^{2}\left(R_{+}^{N}\right)$ to a limit φ_{∞} as $k \rightarrow \infty$. We are now going to show that $\varphi_{\infty} \equiv 0$. As a first step we deduce

$$
\begin{equation*}
\int_{R_{+}^{N}} \varphi_{\infty} \frac{\partial V}{\partial P_{j}}=0, \quad j=1, \ldots, N-1 \tag{3.6}
\end{equation*}
$$

This statement is shown as follows (note that $\operatorname{det} D T=\operatorname{det} D T^{-1}=1$)

$$
\int_{R_{+}^{N}} \varphi_{k}(y)\left[\frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{k, j}}}\left(\frac{T^{-1}\left(\epsilon_{k} y\right)-P_{k}}{\epsilon_{k}}\right)\right] d y
$$

$$
\begin{gathered}
=\epsilon_{k}^{-N} \int_{\Omega_{1}} \chi(x) \Phi_{k}(x) \frac{\partial P_{\Omega_{\epsilon, P}} V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial \tau_{P_{k, j}}} d x \\
=\epsilon_{k}^{-N} \int_{\Omega} \Phi_{k}(x) \frac{\partial P_{\Omega_{\epsilon, P}} V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial \tau_{P_{k, j}}} \\
-\epsilon_{k}^{-N} \int_{\Omega \backslash \Omega_{1}} \Phi_{k}(x) \frac{\partial P_{\Omega_{\epsilon, P}} V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial \tau_{P_{k, j}}} \\
-\epsilon_{k}^{-N} \int_{\Omega_{1}}[1-\chi(x)] \Phi_{k}(x) \frac{\partial P_{\Omega_{\epsilon, P}} V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial \tau_{P_{k, j}}} \\
=0-\epsilon_{k}^{-N} \int_{\Omega \backslash \Omega_{1}} \Phi_{k}(x)\left[\frac{\partial V}{\partial P_{k, j}}-\frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{k, j}}}\right]\left(\frac{x-P_{k}}{\epsilon_{k}}\right) \\
-\epsilon_{k}^{-N} \int_{\Omega_{1}}[1-\chi(x)] \Phi_{k}(x)\left[\frac{\partial V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial P_{k, j}}-\frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{k, j}}}\right]\left(\frac{x-P_{k}}{\epsilon_{k}}\right) \\
-\epsilon_{k}^{-N} \int_{\Omega \backslash \Omega_{1}} \Phi_{k}(x) \frac{\partial V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial P_{k, j}} \\
-\epsilon_{k}^{-N} \int_{\Omega_{1}}[1-\chi(x)] \Phi_{k}(x) \frac{\partial V\left(\frac{x-P_{k}}{\epsilon_{k}}\right)}{\partial P_{k, j}}
\end{gathered}
$$

where Ω_{1} is as defined in section 2 . In the last expression the first two terms tend to zero as $k \rightarrow \infty$ since $\epsilon_{k}{ }^{-N} \Phi_{k}$ is bounded in $L^{2}(\Omega)$ and $[\ldots] \rightarrow 0$ strongly in $L^{2}(\Omega)$. The last two terms tend to zero as $k \rightarrow \infty$ because of the exponential decay of $\partial V / \partial P_{k, j}$ at infinity.

We conclude

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left|\int_{R_{+}^{N}} \varphi_{k}(y) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{k, j}}}\left(\frac{T^{-1}\left(\epsilon_{k} y\right)-P_{k}}{\epsilon_{k}}\right)\right|=0, \quad j=1, \ldots, N-1 . \tag{3.7}
\end{equation*}
$$

This implies (3.6).
Let \mathcal{K}_{0} and \mathcal{C}_{0} be the kernel and cokernel, respectively, of the linear operator $S_{0}^{\prime}(V)$ which is the Fréchet derivative at V of

$$
\begin{gathered}
S_{0}(v)=\Delta v-m v+h(v), \\
S_{0}: H_{N}^{2}\left(R_{+}^{N}\right) \rightarrow L^{2}\left(R_{+}^{N}\right), \\
H_{N}^{2}\left(R_{+}^{N}\right)=\left\{u \in H_{N}^{2}\left(R_{+}^{N}\right) \left\lvert\, \frac{\partial u}{\partial y_{N}}=0\right.\right\} .
\end{gathered}
$$

Note that

$$
\mathcal{K}_{0}=\mathcal{C}_{0}=\operatorname{span}\left\{\left.\frac{\partial V}{\partial y_{j}} \right\rvert\, j=1, \ldots, N-1\right\} .
$$

Equation (3.6) implies that $\varphi_{\infty} \in \mathcal{K}_{0}^{\perp}$. By the exponential decay of V and by (3.2) we have after possibly taking a further subsequence that

$$
\Delta \varphi_{\infty}-m \varphi_{\infty}+h^{\prime}(V) \varphi_{\infty}=0
$$

i.e. $\varphi_{\infty} \in \mathcal{K}_{0}$. Therefore $\varphi_{\infty}=0$.

Hence

$$
\begin{equation*}
\varphi_{k} \rightharpoonup 0 \quad \text { weakly in } H^{2}\left(R_{+}^{N}\right) \tag{3.8}
\end{equation*}
$$

as $k \rightarrow \infty$. By the definition of φ_{k} we get $\Phi_{k} \rightharpoonup 0$ in H^{2} and

$$
\left\|h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{k}\right\|_{L^{2}} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Furthermore,

$$
\left\|(\Delta-m) \Phi_{k}\right\|_{L^{2}} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Since

$$
\begin{gathered}
\int_{\Omega_{\epsilon_{k}, P_{k}}}\left|\nabla \Phi_{k}\right|^{2}+m \Phi^{2}=\int_{\Omega_{\epsilon_{k}, P_{k}}}\left[(m-\Delta) \Phi_{k}\right] \Phi_{k} \\
\leq C\left\|(\Delta-m) \Phi_{k}\right\|_{L^{2}}
\end{gathered}
$$

we have that

$$
\left\|\Phi_{k}\right\|_{H^{1}} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

In summary:

$$
\begin{equation*}
\left\|\Delta \Phi_{k}\right\|_{L^{2}} \rightarrow 0 \text { and }\left\|\Phi_{k}\right\|_{H^{1}} \rightarrow 0 \tag{3.9}
\end{equation*}
$$

From (3.9) and the following elliptic regularity estimate (for a proof see Appendix B)

$$
\begin{equation*}
\left\|\Phi_{k}\right\|_{H^{2}} \leq C\left(\left\|\Delta \Phi_{k}\right\|_{L^{2}}+\left\|\Phi_{k}\right\|_{H^{1}}\right) \tag{3.10}
\end{equation*}
$$

for $\Phi_{k} \in H_{N}^{2}$ we imply that

$$
\left\|\Phi_{k}\right\|_{H^{2}} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

This contradicts the assumption

$$
\left\|\Phi_{k}\right\|_{H^{2}}=1
$$

and the proof of Proposition 3.1 is completed.

Proof of Proposition 3.2: Assume that the statement is not true. Then there exist sequences $\left\{\epsilon_{k}\right\},\left\{P_{k}\right\}$ such that $\epsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$ and $P_{k} \in \partial \Omega$ and such that for all $k, L_{\epsilon_{k}, P_{k}}: \mathcal{K}_{\epsilon_{k}, P_{k}}^{\perp} \rightarrow \mathcal{C}_{\epsilon_{k}, P_{k}}^{\perp}$ is not surjective. Let $\mathcal{K}_{\epsilon, P}$ and $\mathcal{C}_{\epsilon, P}$ be the kernel and cokernel of \tilde{L}_{ϵ}, respectively. Then $\pi_{\epsilon_{k}, P_{k}}: C_{\epsilon_{k}, P_{k}}^{\perp} \rightarrow \mathcal{C}_{\epsilon_{k}, P_{k}}^{\perp}$ is not surjective, i.e. for all k there exists a $\Phi_{k} \in \mathcal{C}_{\epsilon_{k}, P_{k}}^{\perp}$ with $\Phi_{k} \neq 0$ such that $\Psi+\Phi_{k} \notin C_{\epsilon_{k}, P_{k}}^{\perp}$ for all $\Psi \in C_{\epsilon_{k}, P_{k}}^{\perp}$. This is equivalent to $\Phi_{k} \in C_{\epsilon_{k}, P_{k}}$ and $\Phi_{k} \neq 0$. Because we can assume that w.l.o.g. $\Phi_{k}=1$ this can be rewritten as follows. For all k there exists a $\Phi_{k} \in \mathcal{C}_{\epsilon_{k}, P_{k}}$ such that

$$
\begin{gather*}
\left\|\Phi_{k}\right\|_{L^{2}}=1 \tag{3.11}\\
\int_{\Omega_{\epsilon_{k}, P}, P_{k}} \Phi_{k} \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{k, j}}}=0 \quad j=1, \ldots, N-1 .
\end{gather*}
$$

Now since

$$
\Delta \Phi_{k}-m \Phi_{k}+h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{k}=0
$$

and because of the elliptic estimate (3.10) it follows that

$$
\left\|\Phi_{k}\right\|_{H^{2}} \leq C
$$

for some constant C independent of k. Extract a subsequence (again denoted by $\left\{\Phi_{k}\right\}$) such that φ_{k} as defined in (3.5) converges weakly in $H^{2}\left(R_{+}^{N}\right)$ to φ_{∞} as $k \rightarrow \infty$ and φ_{∞} satisfies

$$
\begin{gather*}
\Delta \varphi_{\infty}-m \varphi_{\infty}+h^{\prime}(V) \varphi_{\infty}=0 \quad \text { in } R_{+}^{N}, \\
\frac{\partial \varphi_{\infty}}{\partial y_{n}}=0 \quad \text { in } R^{N-1} \times\{0\} \tag{3.12}
\end{gather*}
$$

with

$$
\begin{equation*}
\int_{R_{+}^{N}} \varphi_{\infty} \frac{\partial V}{\partial y_{j}}=0 \quad j=1, \ldots, N-1 \tag{3.13}
\end{equation*}
$$

From (3.12) we deduce that φ_{∞} belongs to the kernel of $S_{0}^{\prime}(V)$ and (3.13) implies that φ_{∞} lies in the orthogonal complement of the kernel of $S_{0}^{\prime}(V)$.

Therefore $\varphi_{\infty}=0$. As in the proof of Proposition 3.1 we show by the elliptic regularity estimate (3.10) that $\left\|\Phi_{k}\right\|_{H^{2}} \rightarrow 0$ as $k \rightarrow \infty$. This contradicts (3.11) and the proof of Proposition 3.2 is finished.

We are now in a position to solve the equation

$$
\begin{equation*}
\pi_{\epsilon, P} \circ S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V+\Phi_{\epsilon, P}\right)=0 \tag{3.14}
\end{equation*}
$$

Since $\left.L_{\epsilon, P}\right|_{\mathcal{K}_{\epsilon, P}^{\perp}}$ is invertible (call the inverse $L_{\epsilon, P}^{-1}$) we can rewrite

$$
\begin{equation*}
\Phi=-\left(L_{\epsilon, P}^{-1} \circ \pi_{\epsilon, P}\right)\left(S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V\right)\right)-\left(L_{\epsilon, P}^{-1} \circ \pi_{\epsilon, P}\right) N_{\epsilon, P}(\Phi) \equiv M_{\epsilon, P}(\Phi) \tag{3.15}
\end{equation*}
$$

where

$$
N_{\epsilon, P}(\Phi)=S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V+\Phi\right)-\left[S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V\right)+S_{\epsilon}^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi\right]
$$

and the operator $M_{\epsilon, P}$ is defined by the last equation for $\Phi \in H_{N}^{2}\left(\Omega_{\epsilon, P}\right)$. We are going to show that the operator $M_{\epsilon, P}$ is a contraction on

$$
B_{\epsilon, \delta} \equiv\left\{\Phi \in H^{2}\left(\Omega_{\epsilon, P}\right) \mid\|\Phi\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}<\delta\right\}
$$

if δ is small enough. We have

$$
\begin{gathered}
\left\|M_{\epsilon, P}(\Phi)\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)} \leq \lambda^{-1}\left(\left\|\pi_{\epsilon, P} N_{\epsilon, P}(\Phi)\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}+\left\|\pi_{\epsilon, P}\left(P_{\Omega_{\epsilon, P}} V-V\right)\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}\right) \\
\leq \lambda^{-1} C(c(\delta) \delta+\epsilon)
\end{gathered}
$$

where $\lambda>0$ is independent of $\delta>0$ and $c(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. Similarly we show

$$
\left\|M_{\epsilon, P}(\Phi)-M_{\epsilon, P}\left(\Phi^{\prime}\right)\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)} \leq \lambda^{-1} C(\epsilon+c(\delta) \delta)\left\|\Phi-\Phi^{\prime}\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}
$$

where $c(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. Therefore $M_{\epsilon, P}$ is a contraction on B_{δ}. The existence of a fixed point $\Phi_{\epsilon, P}$ now follows from the Contraction Mapping Principle and $\Phi_{\epsilon, P}$ is a solution of (3.15).

Because of

$$
\begin{aligned}
\left\|\Phi_{\epsilon, P}\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)} & \leq \lambda^{-1}\left(\left\|N_{\epsilon, P}\left(\Phi_{\epsilon, P}\right)\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}+\left\|P_{\Omega_{\epsilon, P}} V-V\right\|_{L^{2}}\right) \\
& \leq \lambda^{-1}\left(c \epsilon+c(\delta)\left\|\Phi_{\epsilon, P}\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}\right)
\end{aligned}
$$

we have

$$
\left(1-\lambda^{-1} c(\delta)\right)\left\|\Phi_{\epsilon, P}\right\|_{H^{2}} \leq C \epsilon
$$

We have proved
Lemma 3.3. There exists $\bar{\epsilon}>0$ such that for every pair of ϵ, P with $0<\epsilon<$ $\bar{\epsilon}$ and $P \in \partial \Omega$ there exists a unique $\Phi_{\epsilon, P} \in \mathcal{K}_{\epsilon, P}^{\perp}$ satisfying $S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V+\Phi_{\epsilon, P}\right) \in$ $\mathcal{C}_{\epsilon, P}$ and

$$
\begin{equation*}
\left\|\Phi_{\epsilon, P}\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)} \leq C \epsilon \tag{3.16}
\end{equation*}
$$

We need another statement about the asymptotic behavior of the function $\Phi_{\epsilon, P}$ as $\epsilon \rightarrow 0$, which gives an expansion in ϵ and is stated as follows.

Proposition 3.4.

$$
\begin{equation*}
\Phi_{\epsilon, P}(x)=\epsilon\left(\Phi_{0}(y) \chi(x-P)\right)+\epsilon^{2} \Psi_{\epsilon, P}(x) \tag{3.17}
\end{equation*}
$$

where

$$
\left\|\Psi_{\epsilon, P}\right\|_{\epsilon} \leq C
$$

and Φ_{0} is the unique solution of

$$
\begin{gathered}
\Delta \Phi_{0}-m \Phi_{0}+h^{\prime}(V) \Phi_{0}-h^{\prime}(V) v_{1}=0, \quad \text { in } R_{+}^{N}, \\
\frac{\partial \Phi_{0}}{\partial y_{N}}=0 \quad \text { on } \partial R_{+}^{N},
\end{gathered}
$$

$$
\begin{equation*}
\Phi_{0} \text { is orthogonal to the kernel of } L_{0} \tag{3.18}
\end{equation*}
$$

where $L_{0}=\Delta-m+h^{\prime}(V), L_{0}: H_{N}^{2}\left(R_{+}^{N}\right) \rightarrow L^{2}\left(R_{+}^{N}\right)$.
Proof. Note that the kernel of L_{0} is

$$
\left\{\left.\frac{\partial V}{\partial y_{j}} \right\rvert\, j=1, \ldots, N-1\right\} .
$$

Furthermore we have

$$
\left|\Phi_{0}\right| \leq C \exp (-\mu|y|) \quad \text { for } \mu<\sqrt{m}
$$

The notations for Ω_{1}, χ, ρ and T are as in section 2. Our strategy is to decompose $\Psi_{\epsilon, P}$ into three parts and show that each of them is bounded in $\|\cdot\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}$ as $\epsilon \rightarrow 0$. That means we make the ansatz

$$
\Psi_{\epsilon, P}(x)=\Psi_{\epsilon}^{1}(x)+\Psi_{\epsilon}^{2,1}(x)+\Psi_{\epsilon}^{2,2}(x)
$$

where the functions $\Psi_{\epsilon}^{1}, \Psi_{\epsilon}^{2,1}, \Psi_{\epsilon}^{2,2}$ will be defined as follows. Let Ψ_{ϵ}^{1} be the unique solution of

$$
\begin{gather*}
\epsilon^{2} \Delta \Psi_{\epsilon}^{1}-m \Psi_{\epsilon}^{1}=0 \quad \text { in } \Omega, \\
\frac{\partial \Psi_{\epsilon}^{1}}{\partial \nu}=g^{\epsilon} \quad \text { on } \partial \Omega \tag{3.19}
\end{gather*}
$$

where

$$
g_{\epsilon}(x)=-\frac{\partial}{\partial \nu_{x}}\left[\Phi_{0}(y) \chi(x)\right] .
$$

Since $\left\|g_{\epsilon}\right\|_{L^{2}} \leq C$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|\Psi_{\epsilon}^{1}\right\|_{H^{1}} \leq C \tag{3.20}
\end{equation*}
$$

Define $\Psi_{\epsilon}^{2,1}$ by

$$
\begin{equation*}
\Psi_{\epsilon}^{2,1}=-\frac{1}{\epsilon} \tilde{\pi} \Phi_{0}(x) \chi-\tilde{\pi} \Psi_{\epsilon}^{1} \tag{3.21}
\end{equation*}
$$

where $\tilde{\pi}$ is the projection in $L^{2}\left(\Omega_{\epsilon, P}\right)$ onto $\mathcal{K}_{\epsilon, P}$. Because of the exponential decay of Φ_{0}, the smoothness of χ and and by (3.20) it follows that

$$
\begin{equation*}
\left\|\Psi_{\epsilon}^{2,1}\right\|_{\epsilon} \leq C \tag{3.22}
\end{equation*}
$$

Finally, define $\Psi_{\epsilon}^{2,2}(x)$ to be the unique solution in $H_{N}^{2}(\Omega)$ of the following equation

$$
\begin{gather*}
\epsilon^{2} \Delta \Psi_{\epsilon}^{2,2}-m \Psi_{\epsilon}^{2,2}+h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Psi_{\epsilon}^{2,2}=-\frac{1}{\epsilon^{2}} f_{\epsilon} \quad \text { in } \Omega \tag{3.23}\\
\frac{\partial \Psi_{\epsilon}^{2,2}}{\partial \nu}=0 \quad \text { on } \partial \Omega \tag{3.24}
\end{gather*}
$$

where

$$
f_{\epsilon}=\tilde{L}_{\epsilon}\left(\Phi_{\epsilon, P}-\epsilon \Phi_{0} \chi-\epsilon^{2}\left(\Psi_{\epsilon}^{1}+\Psi_{\epsilon}^{2,1}\right)\right)
$$

Note that the right-hand side of the last equation lies in $\mathcal{C}_{\epsilon, P}^{\perp}$ since

$$
\Phi_{\epsilon, P}-\epsilon \Phi_{0} \chi-\epsilon^{2}\left(\Psi_{\epsilon}^{1}+\Psi_{\epsilon}^{2,1}\right) \in H_{N}^{2} .
$$

This is clear for $\Phi_{\epsilon, P}$ by definition. By construction we have that $-\epsilon \Phi_{0} \chi-$ $\epsilon^{2}\left(\Psi_{\epsilon}^{1}+\Psi_{\epsilon}^{2,1}\right)$ satisfies the Neumann boundary condition. By (3.18) and the smoothness of χ we conclude that $\Phi_{0} \chi \in H^{2}$. By (3.19), $\Psi_{\epsilon}^{1} \in H^{2}$. Finally, since $e_{j} \in H^{2}$ where

$$
e_{j}=\frac{\partial V}{\partial \tau_{P_{j}}} / \left\lvert\, \frac{\partial V}{\partial \tau_{P_{j}}}\right. \|_{L^{2}\left(\Omega_{\epsilon, P}\right)} \quad j=1, \ldots, N-1
$$

we have $\Psi_{\epsilon}^{2,1} \in H^{2}$. Therefore $f_{\epsilon} \in \mathcal{C}_{\epsilon, P}^{\perp}$. Furthermore, the following lemma is true.

Lemma 3.5.

$$
\left\|f_{\epsilon}\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)} \leq C \epsilon^{2}
$$

Proof. We have

$$
\begin{aligned}
& f_{\epsilon}=S_{\epsilon}^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right)\left(\Phi_{\epsilon}-\epsilon \Phi_{0} \chi-\epsilon^{2}\left(\Psi_{\epsilon}^{1}+\Psi_{\epsilon}^{2,1}\right)\right) \\
= & -h\left(P_{\Omega_{\epsilon, P}} V\right)+h(V)+\epsilon h^{\prime}(V) v_{1} \chi+N_{\epsilon, P}^{\prime}\left(\Phi_{\epsilon}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
N_{\epsilon, P}^{\prime}(\Phi)=\frac{1}{|\Omega|} \int_{\Omega} h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{\epsilon}+\frac{1}{|\Omega|} \int_{\Omega}\left[h\left(P_{\Omega_{\epsilon, P}} V\right)-h(V)\right] \\
-\left[h\left(P_{\Omega_{\epsilon, P}} V+\Phi_{\epsilon}\right)-h\left(P_{\Omega_{\epsilon, P}} V\right)-h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{\epsilon}\right] \\
+\frac{1}{|\Omega|} \int_{\Omega}\left[h\left(P_{\Omega_{\epsilon, P}} V+\Phi_{\epsilon}\right)-h\left(P_{\Omega_{\epsilon, P}} V\right)-h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{\epsilon}\right] \\
+\epsilon \Phi_{0}(y)\left[\Delta-m+h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right)\right] \chi(x)+\epsilon<\nabla_{x} \Phi_{0}(y), \nabla_{x} \Phi(x)> \\
+\epsilon^{2} h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Psi_{\epsilon}^{1}+\epsilon^{2}\left[\Delta-m+h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right)\right] \Psi_{\epsilon}^{2,1} .
\end{gathered}
$$

Note that

$$
\begin{gathered}
\left\|-h\left(P_{\Omega_{\epsilon, P}} V\right)+h(V)+\epsilon h^{\prime}(V) v_{1} \chi(x)\right\|_{L^{2}} \\
\leq\left\|-h\left(P_{\Omega_{\epsilon, P}} V\right)+h(V)+\epsilon h^{\prime}(V) v_{1}\right\|_{L^{2}} \\
+\left\|\epsilon\left(-h^{\prime}(V) v_{1}+h^{\prime}(V) v_{1} \chi\right)\right\|_{L^{2}} \\
\leq C\left(\epsilon^{2}+\exp \left(-\mu R_{0}\right)\right)
\end{gathered}
$$

by the definition of χ and the exponential decay of V. Furthermore

$$
\left\|N_{\epsilon, P}^{\prime}(\Phi)\right\|_{L^{2}} \leq C \epsilon^{2}
$$

This proves Lemma 3.5.
By Lemma 3.5 and the invertibility of

$$
\tilde{L}_{\epsilon}: H_{N}^{2} \cap \mathcal{K}_{\epsilon, P}^{\perp} \rightarrow \mathcal{C}_{\epsilon, P}^{\perp}
$$

Proposition 3.4 follows.

4. The reduced problem

In this section we solve the reduced problem and prove our main theorem.
By Lemma 3.3 there exists a unique solution $\Phi_{\epsilon, P} \in \mathcal{K}_{\epsilon, P}^{\perp}$ such that

$$
\begin{aligned}
& S_{\epsilon}\left(u_{\epsilon}\right)=S_{\epsilon}\left(P_{\Omega_{\epsilon, P}} V\left(\frac{x-P}{\epsilon}\right)+\Phi_{\epsilon, P}\right) \\
= & \epsilon^{2} \Delta u_{\epsilon}-m u_{\epsilon}+h\left(u_{\epsilon}\right)-\frac{1}{|\Omega|} \int_{\Omega} h\left(u_{\epsilon}\right) \in \mathcal{C}_{\epsilon, P} .
\end{aligned}
$$

Our idea is to find P such that

$$
S_{\epsilon}\left(u_{\epsilon}\right) \perp \mathcal{C}_{\epsilon, P} .
$$

Let

$$
\begin{aligned}
W_{\epsilon, j}(P) & =\frac{1}{\epsilon^{N+1}} \int_{\Omega}\left(S_{\epsilon}\left(u_{\epsilon}\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}\right) \\
W_{\epsilon}(P) & =\left(W_{\epsilon, 1}(P), \ldots, W_{\epsilon, N-1}(P)\right) .
\end{aligned}
$$

Then $W_{\epsilon}(P)$ is a continuous map of P.
Let us now calculate $W_{\epsilon}(P)$. First of all, from condition (4) on h, we have

$$
|h(t)| \leq C t^{2}
$$

Therefore

$$
\int_{\Omega} h\left(u_{\epsilon}\right) \leq C \epsilon^{N}
$$

Hence by Proposition 2.3

$$
\begin{gathered}
\frac{1}{\epsilon^{N+1}} \int_{\Omega}\left(\int_{\Omega} h\left(u_{\epsilon}\right)\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}=\int_{\Omega} h\left(u_{\epsilon}\right) \frac{1}{\epsilon^{N+1}} \int_{\Omega} \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \\
=\mathcal{O}\left(\epsilon^{N}\right)\left(\frac{1}{\epsilon^{N+1}} \int_{\Omega}\left(\frac{\partial V}{\partial P_{j}}+w_{1}(y) \chi(x-P)+\epsilon w_{2}^{\epsilon}(x)\right)\right) \\
=\mathcal{O}\left(\epsilon^{N}\right) \frac{1}{\epsilon^{N+1}}\left[\mathcal{O}(\exp (-\sigma / \epsilon))+\epsilon \int_{\Omega} w_{2}^{\epsilon}\right] \\
=\mathcal{O}\left(\epsilon^{N / 2}\right)
\end{gathered}
$$

because

$$
\frac{1}{\epsilon^{N}} \int_{\Omega} w_{2}^{\epsilon} \leq \frac{1}{\epsilon^{N / 2}}\left\|w_{2}^{\epsilon}\right\|_{L^{2}(\Omega)}
$$

and Proposition 2.3. On the other hand, since

$$
\epsilon^{2} \Delta \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-m \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+h^{\prime}(V) \frac{\partial V}{\partial P_{j}}=0
$$

we conclude

$$
\begin{gathered}
\int_{\Omega}\left[\epsilon^{2} \Delta u_{\epsilon}-m u_{\epsilon}+h\left(u_{\epsilon}\right)\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \\
=\int_{\Omega}\left\{h\left(u_{\epsilon}\right) \frac{\partial P_{\Omega_{\epsilon, P}} V\left(\frac{x-P}{\epsilon}\right)}{\partial \tau_{P_{j}}}+\left[\epsilon^{2} \Delta \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-m \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}\right] u_{\epsilon}\right\} \\
=\int_{\Omega}\left[h\left(u_{\epsilon}\right) \frac{\partial P_{\Omega_{\epsilon, P}} V\left(\frac{x-P}{\epsilon}\right)}{\partial \tau_{P_{j}}}-h^{\prime}(V) \frac{\partial V\left(\frac{x-P}{\epsilon}\right)}{\partial P_{j}} u_{\epsilon}\right] \\
=\int_{\Omega}\left[h\left(P_{\Omega_{\epsilon, P}} V+\Phi_{\epsilon, P}\right)-h\left(P_{\Omega_{\epsilon, P}} V\right)-h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{\epsilon, P}\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \\
+\int_{\Omega}\left[h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-h^{\prime}(V) \frac{\partial V}{\partial P_{j}}\right] \Phi_{\epsilon, P} \\
+\int_{\Omega}\left[h\left(P_{\Omega_{\epsilon, P}} V\right)-h(V)\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \\
=I_{\epsilon}^{1}+I_{\epsilon}^{2}+J_{\epsilon}
\end{gathered}
$$

where $I_{\epsilon}^{1}, I_{\epsilon}^{2}$, and J_{ϵ} are defined by the last equality. We first calculate I_{ϵ}^{2}.

$$
\begin{gathered}
I_{\epsilon}^{2}=\int_{\Omega}\left[h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-h^{\prime}(V) \frac{\partial V}{\partial \tau_{P_{j}}}\right]\left(\epsilon \Phi_{0}(y) \chi(x-P)+\epsilon^{2} \Psi_{\epsilon}(x)\right) d x \\
=\int_{\Omega}\left[h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-h^{\prime}(V) \frac{\partial V}{\partial \tau_{P_{j}}}\right] \epsilon \Phi_{0} \chi \\
+\epsilon^{2} \int_{\Omega}\left[h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-h^{\prime}(V) \frac{\partial V}{\partial \tau_{p_{j}}}\right] \Psi_{\epsilon} \\
=\epsilon I_{\epsilon}^{2,1}+\epsilon^{2} I_{\epsilon}^{2,2} .
\end{gathered}
$$

Note that

$$
\begin{gathered}
h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-h^{\prime}(V) \frac{\partial V}{\partial \tau_{P_{j}}} \\
=\left[h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right)-h^{\prime}(V)\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+h^{\prime}(V)\left[\frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}-\frac{\partial V}{\partial \tau_{P_{j}}}\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\int_{\Omega}\left[h^{\prime}\left(P_{\Omega_{\epsilon, P}} V\right)-h^{\prime}(V)\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \Phi_{0} \chi \\
=\int_{\Omega} h^{\prime \prime}(V)\left(P_{\Omega_{\epsilon, P}} V-V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \Phi_{0}+\int_{\Omega} h^{\prime \prime \prime}\left(v_{1}\right)\left(P_{\Omega_{\epsilon, P}} V-V\right)^{2} \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \Phi_{0} \\
+\mathcal{O}(\exp (-\delta / \epsilon)) \\
=\mathcal{O}\left(\epsilon^{N+1}\right)
\end{gathered}
$$

since Φ_{0} is even and $V-P_{\Omega_{\epsilon, P}} V=\epsilon V_{1}$ where V_{1} is even. By Proposition 2.1

$$
\int\left|\Psi_{\epsilon}\right|^{2} \leq C \epsilon^{N}
$$

Hence

$$
\left|I_{\epsilon}^{2,2}\right| \leq \mathcal{O}\left(\epsilon^{N}\right)
$$

So

$$
\left|I_{\epsilon}^{2}\right| \leq \mathcal{O}\left(\epsilon^{N+2}\right)
$$

We next compute I_{ϵ}^{1}.

$$
\begin{gathered}
I_{\epsilon}^{1}=\int_{\Omega} h^{\prime \prime}\left(P_{\Omega_{\epsilon, P}} V\right) \Phi_{\epsilon, P}^{2} \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+\int_{\Omega} h^{\prime \prime \prime}\left(v_{1}+P_{\Omega_{\epsilon, P}} V\right) \Phi_{\epsilon, P}^{3} \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \\
=\int_{\Omega} h^{\prime \prime}\left(P_{\Omega_{\epsilon, P}} V\right) \epsilon^{2}\left[\Phi_{0}^{2} \chi^{2}+2 \epsilon \Phi_{0} \chi \Psi_{\epsilon, P}+\epsilon^{2} \Psi_{\epsilon, P}^{2}\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+\mathcal{O}\left(\epsilon^{N+2}\right) \\
=\mathcal{O}\left(\epsilon^{N+2}\right)
\end{gathered}
$$

since Φ_{0} is even. Finally, we compute the term J_{ϵ}.

$$
\begin{gathered}
J_{\epsilon}=\int_{\Omega}\left[h\left(P_{\Omega_{\epsilon, P}} V\right)-h(V)\right] \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}} \\
=\int_{\Omega} h^{\prime}(V)\left(P_{\Omega_{\epsilon, P}} V-V\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+h^{\prime \prime}(V)\left(P_{\Omega} V-V\right)^{2} \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+\mathcal{O}\left(\epsilon^{N+2}\right) \\
=\epsilon \int_{\Omega} h^{\prime}(V)\left(v_{1} \chi+\epsilon\left(v_{2} \chi+v_{3} \chi\right)+\epsilon^{2} \Psi_{\epsilon}\right)\left(\frac{\partial V}{\partial P_{j}}+w_{1}+\epsilon w_{2}^{\epsilon}(x)\right) \\
+\epsilon^{2} \int_{\Omega} h^{\prime \prime}(V)\left(v_{1}^{2} \chi^{2}+\epsilon\left(\Psi_{\epsilon}^{1}\right)^{2}\right) \frac{\partial P_{\Omega_{\epsilon, P}} V}{\partial \tau_{P_{j}}}+\mathcal{O}\left(\epsilon^{N+2}\right) \\
=\epsilon^{2} \int_{\Omega} h^{\prime}(V) v_{3} \frac{\partial V}{\partial P_{j}}+\mathcal{O}\left(\epsilon^{N+2}\right) \\
=-\epsilon^{N+1}\left(\int_{\Omega_{\epsilon, P}} h^{\prime}(V) v_{3} \frac{\partial V}{\partial y_{j}}\right)+\mathcal{O}\left(\epsilon^{N+2}\right) \\
=-\epsilon^{N+1} \int_{R_{+}^{N}} h^{\prime}(V) v_{3} \frac{\partial V}{\partial y_{j}}+\mathcal{O}\left(\epsilon^{N+2}\right) .
\end{gathered}
$$

But

$$
\begin{gathered}
\int_{R_{+}^{N}} h^{\prime}(V) v_{3} \frac{\partial V}{\partial y_{j}}=-\int_{R_{+}^{N}}\left(\Delta \frac{\partial V}{\partial y_{j}}-m \frac{\partial V}{\partial y_{j}}\right) v_{3} \\
=\int_{\partial R_{+}^{N}} \frac{\partial v_{3}}{\partial y_{N}} \frac{\partial V}{\partial y_{j}}-v_{3} \frac{\partial}{\partial y_{N}} \frac{\partial V}{\partial y_{j}}
\end{gathered}
$$

$$
\begin{gathered}
=-\frac{1}{3} \int_{R^{N-1}}\left(\frac{V^{\prime}}{|y|}\right)^{2} \sum_{k, l, m=1}^{N-1} \rho_{k l m}(0) y_{k} y_{l} y_{m} y_{j} d y \\
=-\frac{1}{3} \int_{R^{N-1}}\left(\frac{V^{\prime}}{|y|}\right)^{2} \sum_{k, l, m=1}^{N-1} y_{k} y_{l} y_{m} y_{j} \rho_{k l m}(0) d y \\
=-\frac{1}{3} \int_{R^{N-1}}\left(\frac{V^{\prime}}{|y|}\right)^{2} y_{j}^{2} \sum_{l, m=1}^{N-1} y_{l} y_{m} \rho_{j l m}(0) d y \\
=\nu \rho_{j k k}(0) \\
=\nu \nabla_{j} H(P)
\end{gathered}
$$

where

$$
\nu=-\sum_{k=1}^{N-1} \frac{1}{3} \int_{R^{N-1}}\left(\frac{V^{\prime}}{|y|}\right)^{2} y_{j}^{2} y_{k}^{2} d y \neq 0
$$

Combining $I_{\epsilon}^{1}, I_{\epsilon}^{2}, J_{\epsilon}$, we obtain

$$
W_{\epsilon}(P)=\nu \nabla_{P_{0}} H(P)+W_{\epsilon}^{\prime}(P)
$$

where $W_{\epsilon}^{\prime}(P)$ is continuous in P and $W_{\epsilon}^{\prime}(P)=\mathcal{O}(\epsilon)$ uniformly in P. Suppose at P_{0}, we have $\operatorname{det}\left(\nabla_{j} \nabla_{k} H\left(P_{0}\right)\right) \neq 0$ then standard Brouwer's fixed point theorem shows that for $\epsilon \ll 1$ there exists a P_{ϵ} such that $W_{\epsilon}\left(P_{\epsilon}\right)=0, P_{\epsilon} \rightarrow$ P_{0}.

Thus we have proved the following proposition.
Proposition 4.1. For ϵ sufficiently small there exist points P_{ϵ} with $P_{\epsilon} \rightarrow P_{0}$ such that $W_{\epsilon}\left(P_{\epsilon}\right)=0$.

By Lemma 3.3 and Proposition 4.1 we have

$$
S_{\epsilon}\left(v_{\epsilon}\right)=0,
$$

i.e.

$$
\begin{gathered}
\epsilon^{2} \Delta v_{\epsilon}-m v_{\epsilon}+h\left(u_{\epsilon}\right)-\frac{1}{|\Omega|} \int_{\Omega} h\left(v_{\epsilon}\right)=0 \quad \text { in } \Omega \\
\frac{\partial v_{\epsilon}}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Hence $\int_{\Omega} v_{\epsilon}=0$. Let $u_{\epsilon}=\bar{m}-v_{\epsilon}$. We have

$$
\begin{gathered}
\epsilon^{2} \Delta u_{\epsilon}-f\left(u_{\epsilon}\right)=\sigma_{\epsilon}, \\
\partial u_{\epsilon} / \partial \nu=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

$$
\int_{\Omega} u_{\epsilon}=\bar{m}|\Omega|,
$$

i.e. u_{ϵ} is a solution of the Cahn-Hilliard equation. Moreover

$$
\left\|v_{\epsilon}-V\left(\frac{x-P_{\epsilon}}{\epsilon}\right)\right\|_{\epsilon} \rightarrow 0
$$

and $P_{\epsilon} \rightarrow P_{0} \in \partial \Omega$.
Finally, we study the shape of the solutions v_{ϵ}. Let P_{ϵ} be any local maximum point of v_{ϵ}. Then by (1.1),

$$
m v_{\epsilon}-h\left(v_{\epsilon}\right)+\frac{1}{|\Omega|} \int_{\Omega} h\left(v_{\epsilon}\right) \leq 0
$$

But $\epsilon^{-N} \int_{\Omega} h\left(v_{\epsilon}\right) \rightarrow \int_{R_{+}^{N}} h(V)>0$, hence

$$
m v_{\epsilon}-h\left(v_{\epsilon}\right)<0
$$

So $v_{\epsilon}\left(P_{\epsilon}\right) \geq a_{1}>0$. On the other hand, from our construction,

$$
\left\|v_{\epsilon}\right\|_{\epsilon}^{2} \rightarrow \frac{1}{2}\left(\int_{R^{N}}|\nabla V|^{2}+m V^{2}\right) .
$$

Similar proof as in Theorem 1.2 of [18], we conclude $P_{\epsilon} \in \partial \Omega$ and there is only one such P_{ϵ}.

Appendix A: Trace Inequality

Lemma A. 1 Let $0<\epsilon \leq 1$. Then

$$
\begin{equation*}
\|\Phi\|_{L^{2}\left(\partial \Omega_{\epsilon, P}\right)} \leq C\|\Phi\|_{H^{1}\left(\Omega_{\epsilon, P}\right)} \tag{A.1}
\end{equation*}
$$

for all $\Phi \in H^{1}(\Omega)$ where the constant C is independent of ϵ.
Note that the constant C in (A.1) is required to be independent of ϵ. Therefore Lemma A. 1 is special although trace inequalities are quite standard.

Proof of Lemma A.1. For $\Phi \in H^{1}\left(\Omega_{\epsilon, P}\right)$ define $\Psi \in H^{1}(\Omega)$ by a linear transformation:

$$
\Psi(x)=\Phi(z) \quad \text { where } z=\frac{x-P}{\epsilon} .
$$

Observe that $\|\Phi\|_{L^{2}\left(\partial \Omega_{\epsilon, P}\right)}^{2}=\epsilon^{1-N}\|\Psi\|_{L^{2}(\partial \Omega)}^{2},\|\Phi\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}=\epsilon^{-N}\|\Psi\|_{L^{2}(\Omega)}^{2}$, and $\|\nabla \Phi\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}=\epsilon^{2-N}\|\nabla \Psi\|_{L^{2}(\Omega)}^{2}$. Therefore (and after translation) (A.1) is equivalent to

$$
\begin{equation*}
\|\Psi\|_{L^{2}(\partial \Omega)}^{2} \leq C\left(\epsilon\|\nabla \Psi\|_{L^{2}(\Omega)}^{2}+\frac{1}{\epsilon}\|\Psi\|_{L^{2}(\Omega)}^{2}\right) \tag{A.2}
\end{equation*}
$$

for all $\Psi \in H^{1}(\Omega)$ and $0<\epsilon \leq 1$ where C is independent of ϵ. The proof of (A.2) is standard and is omitted here (see for example the proof of Theorem 3.1 in [1]).

Appendix B: An elliptic regularity estimate

In this section we prove the following inequality

$$
\begin{equation*}
\|\Phi\|_{H^{2}\left(\Omega_{\epsilon, P}\right)} \leq C\left(\|\Delta \Phi\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}+\|\Phi\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}\right) \tag{B.1}
\end{equation*}
$$

for all $\Phi \in H_{N}^{2}\left(\Omega_{\epsilon, P}\right), 0<\epsilon \leq \epsilon_{0}$ where $\Omega_{\epsilon, P}$ is as defined in Section 2 and C is a constant independent of ϵ. For a point P on $\partial \Omega$ we can find a constant $R_{0}>0$ and a smooth function $\rho: B^{\prime}\left(R_{0}\right) \rightarrow R$ such that in $B\left(P, R_{0}\right)$ the boundary $\partial \Omega$ is described by the graph of ρ where ρ satisfies $\rho(0)=0, \nabla \rho(0)=0$ (compare Section 2). Furthermore there exists a map $\eta=T(\xi)$ with $D T(0)=I$ (the identity map) from a neighborhood U_{P} of P onto a ball $B\left(0, R_{1}\right)$ (compare Section 3). By a linear transformation we naturally get a map T^{ϵ} from $U_{P}^{\epsilon}=\left\{(x-P) / \epsilon \mid x \in U_{P}\right.$ onto a ball $B\left(R_{1} / \epsilon\right)$ with center at 0 . We set $y=\eta / \epsilon$. Then the Laplace operator becomes $\epsilon^{2} \Delta_{x}=\Delta_{y}+A^{\epsilon}$ where

$$
A^{\epsilon}=\left|\nabla_{x^{\prime}} \rho\right|^{2} \frac{\partial^{2}}{\partial y_{N}^{2}}-2 \sum_{i=1}^{N-1} \rho_{i} \frac{\partial^{2}}{\partial y_{i} \partial y_{N}}-\epsilon \Delta_{x^{\prime}} \rho \frac{\partial}{\partial y_{N}}
$$

Observe that for given $\delta>0$ we can find $R_{1}>0$ and ϵ_{0} such that for $0<\epsilon \leq \epsilon_{0}$
(B.2) $\quad\left\|\left|\nabla_{x^{\prime}} \rho\right|^{2}\right\|_{L^{\infty}\left(B\left(R_{0} / \epsilon\right)\right)} \leq \delta,\|\rho\|_{L^{\infty}\left(B\left(R_{0} / \epsilon\right)\right)} \leq \delta,\left\|\epsilon \Delta_{x^{\prime}} \rho\right\|_{L^{\infty}\left(B\left(R_{0} / \epsilon\right)\right)} \leq \delta$.

In the same way we transform

$$
\begin{gathered}
\epsilon \frac{\partial}{\partial \nu_{x}}=\left\{1+\left|\nabla_{x^{\prime}} \rho\right|^{2}\right\}^{-1 / 2}\left\{\sum_{k=1}^{N-1} \rho_{k} \frac{\partial}{\partial y_{k}}-\left(1+\left|\nabla_{x^{\prime}} \rho\right|^{2}\right) \frac{\partial}{\partial y_{N}}\right\} \\
=-\frac{\partial}{\partial y_{N}}+B^{\epsilon}
\end{gathered}
$$

where B^{ϵ} is a differential operator on $B\left(R_{1} / \epsilon\right) \cup\left\{y_{N}=0\right\}$ with coefficients which are bounded in L^{∞} for $0<\epsilon \leq \epsilon_{0}$ (compare section 2). From $\left\{U_{P} \mid P \in\right.$ $\partial \Omega\}$ we select a finite subcovering of $\partial \Omega$ and denote it by $\left\{U_{1}, \ldots, U_{n}\right\}$. Choosing $U_{0}=\Omega$ the set $\left\{U_{0}, \ldots, U_{n}\right\}$ is a finite covering of $\bar{\Omega}$ consisting of open sets. We keep this covering fixed from now on. Let $\left\{\theta_{0}, \ldots, \theta_{n}\right\}$ be a partition of unity subordinate to this open covering. Denote $\theta_{i}^{\epsilon}(y)=$
$\theta_{i} \circ T^{-1}(\epsilon y)$. Since

$$
u=\sum_{i=0}^{n} \theta_{i}^{\epsilon} u
$$

we have

$$
\begin{equation*}
\|u\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2} \leq\left\|\theta_{0}^{\epsilon} u\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+\sum_{i=1}^{n}\left\|\theta_{i}^{\epsilon} u\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2} \tag{B.3}
\end{equation*}
$$

Since θ_{0}^{ϵ} has compact support in R^{N}

$$
\left\|\theta_{0}^{\epsilon} u\right\|_{H^{2}\left(R^{N}\right)}^{2}=\left\|\Delta\left(\theta_{0}^{\epsilon} u\right)\right\|_{L^{2}\left(R^{N}\right)}^{2}+\left\|\theta_{0}^{\epsilon} u\right\|_{H^{1}\left(R^{N}\right)}^{2}
$$

(see for example [10], Corollary 9.10). Because of

$$
\Delta\left(\theta_{0}^{\epsilon}\right)=\theta_{0}^{\epsilon} \Delta u+2 \nabla u \cdot \theta_{0}^{\epsilon}+u \Delta \theta_{0}^{\epsilon}
$$

and

$$
\left\|\nabla \theta_{0}^{\epsilon}\right\|_{L^{\infty}\left(R^{N}\right)} \leq C \epsilon, \quad\left\|\Delta \theta_{0}^{\epsilon}\right\|_{L^{\infty}\left(R^{N}\right)} \leq C \epsilon^{2}
$$

we obtain

$$
\begin{equation*}
\left\|\theta_{0}^{\epsilon} u\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2} \leq C\left(\left\|\theta_{0}^{\epsilon} \Delta u\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+\|u\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}^{2}\right) . \tag{B.4}
\end{equation*}
$$

We are now going to estimate $\theta_{i}^{\epsilon} u, i=1, \ldots, n$. Note that

$$
\begin{equation*}
\frac{1}{C}\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{k}\left(R_{+}^{N}\right)} \leq\left\|\theta_{i}^{\epsilon} u\right\|_{H^{k}\left(\Omega_{\epsilon, P}\right)} \leq C\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{k}\left(R_{+}^{N}\right)} \tag{B.5}
\end{equation*}
$$

where $k=0,1$, or 2 and

$$
v^{*}(y) \equiv v\left(\frac{1}{\epsilon} T^{-1}(\epsilon y)\right)
$$

for $v \in H^{2}\left(U_{i}^{\epsilon}\right)$. Then

$$
\begin{gather*}
\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{2}\left(R_{+}^{N}\right)}^{2} \leq \bar{C}\left(\left\|\Delta\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{L^{2}\left(R_{+}^{N}\right)}^{2}+\left\|\frac{\partial}{\partial y_{N}}\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1 / 2}\left(R^{N-1} \times\{0\}\right)}^{2}\right. \tag{B.6}\\
\left.+\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1}\left(R_{+}^{N}\right)}^{2}\right)
\end{gather*}
$$

(see for example [15], Theorem 4.1). Now (B.2) implies that

$$
\left\|A^{\epsilon}\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{L^{2}\left(R_{+}^{N}\right)}^{2} \leq \delta^{2}\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1}\left(R_{+}^{N}\right)}^{2}
$$

Therefore from (B.6)

$$
\begin{gathered}
\left(1-\bar{C} \delta^{2}\right)\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{2}\left(R_{+}^{N}\right)}^{2} \\
\leq \bar{C}\left(\left\|\left(\Delta+A^{\epsilon}\right)\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{L^{2}\left(R_{+}^{N}\right)}^{2}+\left\|\frac{\partial}{\partial y_{N}}\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1 / 2}\left(R^{N-1} \times\{0\}\right)}^{2}\right. \\
\left.+\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1}\left(R_{+}^{N}\right)}^{2}\right)
\end{gathered}
$$

For the operator B^{ϵ} we can calculate in an analogous way. The trace theorem implies

$$
\begin{gathered}
\left(1-\tilde{C} \delta^{2}\right)\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{2}\left(R_{+}^{N}\right)}^{2} \\
\leq C\left(\left\|\left(\Delta+A^{\epsilon}\right)\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{L^{2}\left(R_{+}^{N}\right)}^{2}+\left\|\left(\frac{\partial}{\partial y_{N}}+B^{\epsilon}\right)\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1 / 2}\left(R^{N-1} \times\{0\}\right)}^{2}\right. \\
\left.+\left\|\left(\theta_{i}^{\epsilon} u\right)^{*}\right\|_{H^{1}\left(R_{+}^{N}\right)}^{2}\right)
\end{gathered}
$$

Since \tilde{C} is by construction independent of ϵ we can choose δ so small that $1-\tilde{C} \delta^{2} \geq 1 / 2$. This implies
(B.7) $\left\|\theta_{i}^{\epsilon} u\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2} \leq C\left(\left\|\Delta\left(\theta_{i}^{\epsilon} u\right)\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+\left\|\frac{\partial}{\partial \nu_{\epsilon}}\left(\theta_{i}^{\epsilon} u\right)\right\|_{H^{1 / 2}\left(\partial \Omega_{\epsilon, P}\right)}^{2}\right.$ $\left.\left\|\theta_{i}^{\epsilon} u\right\|_{H^{1}\left(\Omega_{\epsilon, P)}\right.}^{2}\right)$.
Similarly as before

$$
\begin{equation*}
\Delta\left(\theta_{i}^{\epsilon} u\right) \|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2} \leq C\left(\left\|\theta_{i}^{\epsilon} \Delta u\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+\|u\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}^{2}\right) \tag{B.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\frac{\partial}{\partial \nu_{\epsilon}}\left(\theta_{i}^{\epsilon} u\right)\right\|_{H^{1 / 2}\left(\partial \Omega_{\epsilon, P}\right)}^{2} \leq C\|u\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}^{2} \tag{B.9}
\end{equation*}
$$

because of $\partial u / \partial \nu_{\epsilon}=0$. Combining (B.7) - (B.9) we get

$$
\begin{equation*}
\left\|\theta_{i}^{\epsilon} u\right\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2} \leq C\left(\left\|\theta_{i}^{\epsilon} \Delta u\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+\|u\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}^{2}\right) \tag{B.10}
\end{equation*}
$$

We conclude, using (B.3), (B.4) and (B.10), that

$$
\begin{aligned}
\|u\|_{H^{2}\left(\Omega_{\epsilon, P}\right)}^{2} & \leq C\left(\sum_{i=0}^{n}\left\|\theta_{\epsilon}^{i} \Delta u\right\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+(n+1)\|u\|_{H^{1}\left(\Omega_{\epsilon, P)}\right.}^{2}\right) \\
& \leq C_{n}\left(\|\Delta u\|_{L^{2}\left(\Omega_{\epsilon, P}\right)}^{2}+\|u\|_{H^{1}\left(\Omega_{\epsilon, P}\right)}^{2}\right)
\end{aligned}
$$

where C_{n} depends on n. Since n is independent of ϵ the proof of (B.1) is finished.

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Von Nostrand, Princeton, 1965.
[2] Alikakos, N., Bates, P.W., and Chen, X., Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rat. Mech. Anal.,1994, Vol. 128, pp. 165-205.
[3] Alikakos, N., Bates, P.W. and Fusco, G., Slow motion for the Cahn-Hilliard equation in one space dimension, J. Diff. Eqns., 1991, Vol. 90, pp. 81-134.
[4] Bates, P.W. and Fife, P.C., The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., 1993, Vol. 53, pp. 990-1008.
[5] Cahn, J.W. and Hilliard, J.E., Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys., 1958, Vol 28, pp. 258-267.
[6] Chen, X. and Kowalczyk, M., Existence of equilibria for the Cahn-Hilliad equation via local minimizers of the perimeter, preprint.
[7] Dancer, E.N., A note on asymptotic uniqueness for some nonlinearities which change sign, preprint.
[8] Floer, A. and Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, 1986, J. Funct. Anal., Vol. 69, pp. 397-408.
[9] Gidas, B., Ni, W.-M., and Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in R^{n}, Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies Vol. 7A, pp. 369-402, Academic Press, New York, 1981.
[10] Gilbarg, D. and Trudinger, N.S.,Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, 1983.
[11] Grinfeld, M. and Novick-Cohen, A., Counting stationary solutions of the CahnHilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 1995, Vol. 125, pp. 351-370.
[12] Helffer, B. and Sjöstrand, J., Multiple wells in the semi-classical limit I, Comm. PDE, 1984, Vol. 9, pp. 337-408.
[13] Kohn, R.V. and Sternberg, P., Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 1989, Vol. 111, pp. 69-84.
[14] Lin, C.-S.,Ni, W.-M., and Takagi, I., Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eqns., 1988, Vol. 72, pp. 1-27.
[15] Lions, J.L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York/Heidelberg/Berlin, 1972.
[16] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 1989, Vol. 107, 71-83.
[17] Ni, W.-M., Pan, X., and Takagi, I., Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 1992, Vol. 67, pp. 1-20.
[18] Ni, W.-M. and Takagi, I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 1991, Vol. 41, pp. 819-851.
[19] Ni, W.-M. and Takagi, I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 1993, Vol. 70, pp. 247-281.
[20] Ni, W.-M. and Wei, J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 1995, Vol. 48, pp. 731-768.
[21] Oh, Y.G., Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_{a}, 1988$, Comm. PDE, Vol. 13(12), pp. 14991519.
[22] Oh, Y.G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple-well potentials, 1990, Comm. Math. Phys., Vol. 131, pp. 223-253.
[23] Pego, R.L., Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London A, 1989, Vol. 422, pp. 261-278.
[24] Peletier, L.A. and Serrin, J., Uniqueness of positive solutions of semilinear equations in R^{n}, Arch. Rational Mech. Anal., 1983, Vol. 81, pp. 181-197.

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany

[^0]: 1991 Mathematics Subject Classification. Primary 35B40, 35B45; Secondary 35J40.
 Key words and phrases. Phase Transition, Nonlinear Elliptic Equations.

