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Abstract. In [40], it was shown that the following singularly perturbed Dirichlet problem

ε2∆u − u + |u|p−1u = 0, in Ω,

u = 0 on ∂Ω
has a nodal solution uε which has the least energy among all nodal solutions. Moreover, it is shown
that uε has exactly one local maximum point P ε

1 with a positive value and one local minimum
point P ε

2 with a negative value and, as ε → 0,

ϕ(P ε
1 , P ε

2 ) → max
(P1,P2)∈Ω×Ω

ϕ(P1, P2),

where ϕ(P1, P2) = min( |P1−P2
2 , d(P1, ∂Ω), d(P2, ∂Ω)). The following question naturally arises:

where is the nodal surface {uε(x) = 0}? In this paper, we give an answer in the case of
the unit ball Ω = B1(0). In particular, we show that for ε sufficiently small, P ε

1 , P ε
2 and the

origin must lie on a line. Without loss of generality, we may assume that this line is the x1-
axis. Then uε must be even in xj , j = 2, ..., N , and odd in x1. As a consequence, we show that
{uε(x) = 0} = {x ∈ B1(0)|x1 = 0}. Our proof is divided into two steps: first, by using the method
of moving planes, we show that P ε

1 , P ε
2 and the origin must lie on the x1-axis and uε must be even

in xj , j = 2, ..., N . Then, using the Liapunov-Schmidt reduction method, we prove the uniqueness
of uε (which implies the odd symmetry of uε in x1). Similar results are also proved for the problem
with Neumann boundary conditions.

1. Introduction

We consider nodal solutions to the following singularly perturbed semilinear elliptic problem⎧⎨
⎩ ε2∆u − u + |u|p−1u = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ε > 0 is a small constant,

∆ :=
∑N

j=1
∂2

∂xj∂xj
denotes the Laplace operator in RN , and

1 < p <
(

N + 2

N − 2

)
+

(
=

N + 2

N − 2
when N ≥ 3; = +∞ when N = 1, 2

)
.
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Problem (1.1) arises in various applications, such as chemotaxis, population genetics, chemical

reactor theory, etc. In the past few years the effect of the geometry or the topology of Ω on the

solvability and /or the multiplicity of positive solutions of problem like (1.1) has been extensively

studied, see [6], [7], [8], [11], [12], [14], [15], [17], [30], [37], and the references therein. In particular,

in [37], Ni and Wei established that for ε sufficiently small problem (1.1) has a positive least-energy

solution with one local (hence global) maximum point Pε and d(Pε, ∂Ω) tends to maxP∈Ωd(P, ∂Ω),

where d(P, ∂Ω) is the usual distance function of P to the boundary ∂Ω. In [49] the second author

showed a kind of converse of the result in [37], namely for every strict local maximum point of the

distance function, say P , there exists a family of positive solutions uε of (1.1) with a single peak

Pε in Ω such that PεtoP as ε → 0. The effect of the geometry on the existence of multi-peaked

solutions of (1.1) has been studied in [8], [12], [14], [15], [17], [30], [38] and the references therein.

Recent surveys can be found in [42] and [56].

In [40] Noussair and the first author established the existence of a “least energy” nodal solution

and showed that, for small ε, it has exactly one local maximum point P ε
1 with a positive value

and one local minimum point P ε
2 with a negative value. Moreover, as ε → 0, ϕ(P ε

1 , P
ε
2) →

max(P1,P2)∈Ω×Ω ϕ(P1, P2), where the function ϕ(P1, P2) is defined by

ϕ(P1, P2) = min(
|P1 − P2|

2
, d(P1, ∂Ω), d(P2, ∂Ω)). (1.3)

A natural question is: Where is the nodal surface (or nodal line) {x ∈ Ω|uε(x) = 0}?
In this paper, we give an answer in the case of the domain Ω being the unit ball B = {x ∈

RN ||x| < 1}. Naturally, one may ask: is the solution uε odd in one-direction (say x1)? Our

answer is yes.

In fact, we can give a complete characterization of all possible two-peaked nodal solutions. More

precisely, a solution uε is called a two-peaked nodal solutions to (1.1) if the following holds:

(a) for ε sufficiently small, uε has only one local maximum point P ε
1 and one local minimum

point P ε
2 , and uε(P

ε
1) > 0, uε(P

ε
2) < 0,

(b) the energy of uε is bounded, namely

lim sup
ε→0

(ε−NJε[uε]) < +∞, (1.4)

where Jε[u] is the energy functional associated with (1.1):

Jε[u] =
ε2

2

∫
Ω
|∇u|2 +

1

2

∫
Ω
|u|2 − 1

p + 1

∫
Ω
|u|p+1, u ∈ H1

0 (Ω). (1.5)

The following is our first result:
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Theorem 1.1. Let ε be small enough and let uε be a two-peaked nodal solution of (1.1) with exactly

one local maximum point P ε
1 which has positive value and exactly one local minimum point P ε

2 which

has a negative value. Then the points P ε
1 , P ε

2 and the origin lie on a line. Without loss of generality,

we may assume that this line is the x1-axis. Then uε is even in xj, j = 2, ..., N and odd in x1. As

a consequence, P ε
1 = −P ε

2 , the nodal surface is given by {uε(x) = 0} = {x ∈ B1(0)|x1 = 0} and

the two-peaked nodal solution to (1.1) is unique.

Our method can also be applied to the corresponding Neumann problem:⎧⎨
⎩ ε2∆u − u + |u|p−1u = 0 in Ω,

∂u
∂ν

= 0 on ∂Ω.
(1.6)

In [41], Noussair and the first author proved the existence of a nodal solution to (1.6) which has

the least energy among all nodal solutions. Moreover, it has exactly one local maximum point P ε
1 ∈

∂Ω which has a positive value and one local minimum point P ε
2 ∈ ∂Ω which has a negative value. It

is shown that, as ε → 0, H(P ε
1) → maxP∈∂Ω H(P ), H(P ε

2) → maxP∈∂Ω H(P ), |P ε
1 − P ε

2 |/ε → +∞,

where H(P ) is the mean curvature of the boundary ∂Ω at P . Since H(P ) = 1 when Ω = B1(0),

we can only conclude that |P ε
1 − P ε

2 |/ε → +∞. Now we have

Theorem 1.2. Suppose that Ω = B1(0). Let ε be small enough and let uε be a nodal solution of

(1.6) with exactly one local maximum point P ε
1 ∈ ∂Ω having positive value and one local minimum

point P ε
2 ∈ ∂Ω having negative value. Then we must have P ε

1 = −P ε
2 . Without loss of generality,

we may assume that P ε
1 = (1, 0, ..., 0) Then uε is even in xj, j = 2, ..., N and is odd in x1. As a

consequence, the nodal surface satisfies {uε(x) = 0} = {x ∈ B1(0)|x1 = 0}.

Our proofs of Theorems 1.1 and 1.2 involve the use of the method moving planes (MMP) to

nodal solutions and the method of Liapunov-Schmidt reduction.

MMP is a powerful method in showing symmetry for positive solutions to Dirichlet problems

[20]. For positive solutions to Neumann problems, it has been used recently to show partial

symmetry for blow-up and concentration problems [9], [31], [32]. In particular, we mention the

results of Lin and Takagi [32] who showed that for the Neumann problem (1.6), (positive) single-

boundary spike solutions must be axially symmetric, whereas single interior spike solutions must

be radially symmetric. Further, for the two-boundary spike solution the two local maximum points

P ε
1 ∈ ∂Ω, P ε

2 ∈ ∂Ω must satisfy P ε
1 = −P ε

2 . By using this information, they showed the uniqueness

of the single-boundary spike solution and of the two boundary spike solution, respectively. (We

remark that the uniqueness of the single-boundary solutions and the single-interior spike solutions
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in general domains is studied in [5], [39], [53], [51].) As far as we know, there have been no previous

results on the application of MMP to nodal solutions.

We adopt the method of [32] to nodal solutions. However, MMP alone can not establish

the oddness of uε in x1. To this end, we follow [34], where a combination of MMP and the

Liapunov-Schmidt reduction method is used to show the uniqueness of two- and three-peaked

positive solutions to singularly perturbed Neumann problems. The method of Liapunov-Schmidt

reduction has been used in singularly perturbed problems to obtain existence and multiplicity of

solutions ([2], [3], [4], [5], [10], [13], [14], [18], [24], [25], [27], [29], [43], [44], [54], [55]). As far as

we know, the results of this paper are the first in using a combination of both methods to prove

the partial symmetry for nodal solutions.

More precisely, our proof of Theorem 1.1 proceeds in two steps:

Step 1. We use MMP to show that P ε
1 , P

ε
2 and the origin must lie on a line (say the x1-axis).

Furthermore, uε is even in xj, j = 2, ..., N . So, without loss of generality, we may assume that

P ε
1 = (lε1, 0, ..., 0), P ε

2 = (lε2, 0, ..., 0). This reduces our problem to one on R2 with the two scalar

variables lε1 and lε2.

Step 2. We now show that uε is odd in x1, namely uε(x1, ..., xN ) = −uε(−x1, ..., xN ). To achieve

this, we show the uniqueness of uε if ε is small enough. We have to compute the degree of uε

restricted to the symmetry class obtained in Step 1. We use the Liapunov-Schmidt reduction

method and asymptotic analysis to show that uε is nondegenerate and that the degree at uε is

exactly (−1)0. This proves the uniqueness.

Finally, we remark that our results are also true if we replace |u|p−1u by some more general

nonlinearity f(u) which satisfies some nondegeneracy conditions. We omit the details.

The structure of the paper is as follows:

In Section 2, we shall study some properties of nodal solutions with two peaks.

In Section 3, we use the well-known method of moving planes (MMP) to show that P ε
1 , P

ε
2 and

the origin must lie on a line and that uε is axially symmetric about that line.

In Section 4, Section 5 and Section 6, we prove the uniqueness of nodal solutions in the partial

symmetry class introduced in Section 3. As a consequence, we show that uε is odd in x1.

In Section 4, we present some preliminaries on the reduction from the infinite dimensional space

H1
0 (Ω) to a finite dimensional problem on the space of the locations of the maximum and minimum

points. In Section 5, we compute the first and second order derivatives of reduced the problem.
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In Section 6, we show the uniqueness of two-peaked nodal solutions by computing its Morse index

(restricted to a certain symmetry class).

Finally in Section 7, we show how the ideas can be adopted to prove the uniqueness of the

two-boundary-peaked nodal solution and thus prove Theorem (1.2).

Several technical estimates are proved in Appendices A and B .

It is always assumed that ε > 0 is small and δ > 0 is a fixed but small constant. Throughout

the paper, we use C to denote various constants independent of ε small. We use Pj,i to denote the

i−th component of Pj.

Acknowledgments. The research of JW is supported by an Earmarked Grant from RGC of

Hong Kong. MW thanks the Department of Mathematics at CUHK for their kind hospitality.

2. Some Properties of uε

Let uε be a two-peaked nodal solution of (1.1) for Ω = B1(0) =: B with one local maximum

point P ε
1 having positive value and one local minimum point P ε

2 having negative value. In this

section, we study some properties of uε, which will be useful in the next section.

The asymptotic behavior of uε can be characterized by the unique solution of the following

ground-state equation ⎧⎨
⎩ ∆w − w + wp = 0, w > 0 in RN ,

w(0) = maxy∈RN w(y), w(y) → 0 as |y| → +∞.
(2.1)

It is well-known that problem (2.1) has a unique solution, called w, which is radially symmetric

and nondegenerate, namely

Kernel(∆ − 1 + pwp−1) = span

{
∂w

∂y1

, ...,
∂w

∂yN

}
. (2.2)

The uniqueness of w is proved in [28] and the radial symmetry of w follows from the well-known

result of Gidas, Ni and Nirenberg [21]. Moreover, we have the following asymptotic behavior of

w:

w(r) = ANr−
N−1

2 e−r
(
1 + O

(
1

r

))
, w

′
(r) = −ANr−

N−1
2 e−r

(
1 + O

(
1

r

))
, (2.3)

for r large, where AN > 0 is a generic constant.

We summarize the asymptotic behavior of uε as follows.
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Lemma 2.1. Let uε be a two-peaked nodal solution of (1.1) for Ω = B1(0) =: B ( with unique

local maximum point P ε
1 and unique local minimum point P ε

2 . Then we have ‖uε − w(
x−P ε

1

ε
) +

w(
x−P ε

2

ε
)‖L∞(Ω) → 0. Moreover, it holds that (a) there exists a δ > 0 such that

d(P ε
1 , ∂Ω) ≥ δ, d(P ε

2 , ∂Ω) ≥ δ, |P ε
1 − P ε

2 | ≥ δ, as ε → 0, (2.4)

(b) as a consequence,

P ε
1 → (

1

2
, 0, ..., 0), P ε

2 → (−1

2
, 0, ..., 0) as ε → 0. (2.5)

Proof: The proof of the first statement is standard. See [35], [36], and [37]. The proof of (2.4) is

similar to that of Lemma 2.1 of [12].

To prove (2.5), we may assume without loss of generality that P ε
1 → P 0

1 = (l1, 0, ..., 0) for some

l1 > 0. Let P ε
2 → P 0

2 . Then, similar to the proof of Theorem 1.1 of [48], we have

∫
∂Ω

z − P 0
1

|z − P 0
1 |

dµP 0
1
(z) − c1

P 0
1 − P 0

2

|P 0
1 − P 0

2 |
= 0, (2.6)

∫
∂Ω

z − P 0
2

|z − P 0
2 |

dµP 0
2
(z) − c2

P 0
2 − P 0

1

|P 0
2 − P 0

1 |
= 0, (2.7)

where c1, c2 ≥ 0 and dµP (z) ∈ ΛP which is defined by

ΛP =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩dµP (z) ∈ M(∂Ω)

∣∣∣∣∣∣∣∣∣
there exist εk → 0, Pεk

→ P , such that

limεk→0
e
−

2|z−Pεk
|

εk dz∫
∂Ω

e
−

2|z−Pεk
|

εk dz

→ dµP (z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where M(∂Ω) is the set of all bounded Borel measures on ∂Ω and the convergence is the weak-∗
convergence of measures. In particular, if L = |P 0

1 − P 0
2 | > 2d(P 0

i , ∂Ω), then ci = 0.

Thus, we have that L = |P 0
1 − P 0

2 | = 2d(P 0
1 , ∂Ω) = 2d(P 0

2 , ∂Ω). Since P 0
1 is on the x1-axis, we

see that dµP 0
1

= δ(1,0,...,0). From (2.6), we conclude that P 0
2 must also lie on the x1-axis and hence

P 0
1 = −P 0

2 = (1
2
, 0, ..., 0).

�
Our next result shows the existence of solutions having the properties of Theorem 1.1.

Lemma 2.2. There exists a two-peaked nodal solution ûε of (1.1) for Ω = B1(0) =: B such that

ûε is even in xj, j = 2, ..., N and is odd in x1. Moreover, the local maximum point P ε
1 and the local

minimum point P ε
2 of ûε satisfy: P ε

1 = −P ε
2 , P ε

1 = (lε, 0, ..., 0), lε → 1
2
.
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Proof: Let Ω+ = B∩{x1 > 0} and vε be the least energy positive solution constructed in [37]. By

the symmetry of Ω+, we may assume that vε is even in xj, j = 2, ..., N and that the only maximum

point of vε lies on the x1−axis and approaches the point (1
2
, 0, ..., 0). Now let

ûε =

⎧⎨
⎩ vε(x1, x2, ..., xN ), if x1 ≥ 0,

−vε(−x1, x2, ..., xN ), if x1 < 0.
(2.8)

It is easy to see that ûε is a two-peaked nodal solution of (1.1) and ûε satisfies the properties of

Lemma 2.2.

�
In the rest of the paper, we shall prove the uniqueness of the nodal solution, namely that uε = ûε,

provided that ε is sufficiently small.

3. MMP Applied to Nodal Solutions of (1.1)

In this section, we apply the well-known method of moving planes to a two-peaked nodal solution

uε of (1.1) for Ω = B1(0) =: B. We follow the proofs given in Section 3 of [32], where it is shown

that for two boundary spikes P ε
1 , P

ε
2 it holds that P ε

1 = −P ε
2 , provided that ε is sufficiently small.

Let P ε
1 , P

ε
2 be the local maximum and the local minimum point of uε, respectively. Our main

result in this section says that P ε
1 , P

ε
2 and the origin must lie on a line and, moreover, uε is axially

symmetric with respect to the line.

We prove this by contradiction. Suppose P ε
1 , P ε

2 and the origin are not on a line. (So they form

a triangle.) Then P ε
1 , P

ε
2 and the origin lie in a two-dimensional hyperplane which without loss of

generality is given by {(x1, ..., xN )|x2 = ... = xN−1 = 0}. We may further assume that

tε = P ε
1,N = −P ε

2,N > 0, P ε
2,1 > 0. (3.1)

Note that (3.1) is possible since P ε
1 , 0, P

ε
2 do not lie on a line.

Let θε = arccos (
P ε

1,1√
(P ε

1,1)2+(P ε
1,N )2

) ∈ (0, π − arctan(
−P ε

2,N

P ε
2,1

)).

Set eθ = (sin θ, 0, ..., 0,− cos θ), let Πθ
N−1 be the (N −1)−dimensional hyperplane perpendicular

to the vector eθ, and denote by xθ the reflection of x with respect to Πθ
N−1. Set

wθ
ε (x) = uε(x) − uε(x

θ) for x ∈ Σθ,

where Σθ is the connected component of Ω\Πθ
N−1 containing P ε

1 . Obviously, wθ
ε satisfies⎧⎨

⎩ ε2∆wθ
ε + cθ

ε(x)wθ
ε = 0 in Σθ,

wθ
ε (x) = 0 on ∂Σθ,

(3.2)
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where

cθ
ε(x) = −1 +

|uε(x)|p−1uε(x) − |uε(x
θ)|p−1uε(x

θ)

uε(x) − uε(xθ)
. (3.3)

We prove our claim in a series of three steps.

Step 1: We first prove that

w0
ε (x) > 0 for x ∈ Σ0 = {x ∈ Ω|xN > 0}. (3.4)

Note that since P ε
1 is the only local maximum point of uε , P ε

1 is actually the global maximum

point of uε. Similarly, P ε
2 is the global minimum point of uε. Let P̄ ε

2 be the reflection point of P ε
2

with respect to Π0
N−1. Note that P̄ ε

2,N = tε = P ε
1,N , by (3.1). (So P̄ ε

2 = (P ε
2,1, ...,−P ε

2,N ).)

For a contradiction, we assume that the set

Eε := {x ∈ Σ0|w0
ε (x) < 0}

is non-empty. (The following argument is for a subsequence of εi → 0. For simplicity, we use the

notation ε to denote εi.)

Case 1: tε
ε
→ +∞ as ε → 0.

In this case, it is easy to see that for arbitrarily large R > 0, we have Eε ⊂ (BεR(P ε
1)∪BεR(P̄ ε

2))
c

for ε small enough, since P ε
1 is a global maximum point with a positive value and P ε

2 is a global

minimum point with a negative value. Hence |uε| ≤ δ for x ∈ Eε and ε small. Moreover,

w0
ε (P

ε
1) > 0, w0

ε (P̄
ε
2) > 0. This implies that

cθ
ε(x) ≤ −1

2
for x ∈ Eε. (3.5)

Now by (3.2), the minimum value of w0
ε , if it is negative, must be obtained on the boundary of Σ0,

which is impossible since wθ
ε = 0 on ∂Σ0. So Eε is empty. By the Maximum Principle, w0

ε > 0.

This finishes Case 1.

Case 2: tε
ε
→ s as ε → 0, where s ∈ (0, +∞).

In this case, since
|P ε

1−P ε
2 |

ε
→ +∞, we have

|P ε
1−P̄ ε

2 |
ε

→ +∞. Let xε ∈ Ēε be such that

w0
ε (xε) = inf

Eε

w0
ε (x) < 0. (3.6)

Assume for the moment that

limsupε→0

{
min(|xε − P ε

1 |, |xε − P̄ ε
2 |)

ε

}
→ +∞.
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Then, by Lemma 2.1, uε(xε) → 0, cε(xε) < −1
2

< 0 and 0 ≤ ε2∆w0
ε (xε) = −c0

ε(xε)w
0
ε (xε) < 0, a

contradiction. Therefore we conclude that

min(|xε − P ε
1 |, |xε − P̄ ε

2 |) ≤ Rε

for some R > 0.

Without loss of generality, we may assume that |xε − P ε
1 | ≤ Rε. (The other case is exactly the

same.) Let P̂ ε
1 be the projection point of P ε

1 on Π0
N−1. That is, P̂ ε

1 = (P ε
1,1, 0, ..., 0).

Let

x = P̂ ε
1 + εy, vε(y) = uε(x), xε = P̂ ε

1 + εyε.

Set yε = (y
′
ε, yε,N). Then yε,N ≥ 0 and let us assume that yε,N → η∗ ≥ 0, y

′
ε → y

′
∗. We claim that

η∗ > 0. In fact, by our assumption,
P ε

1,N

ε
→ s > 0. Then vε(y) → w(y − seN) in C2

loc(R
N), where

eN = (0, ..., 0, 1). (Observe that
|P ε

1−P̄ ε
2 |

ε
→ +∞.) If η∗ = 0, then

∂w0
ε (εyε+P ε

1 )

∂yN
→ 2 ∂w

∂yN
(y

′
∗, s) < 0

which contradicts to the fact that ∇w0
ε (xε) = 0. So η∗ > 0. In this case, w0

ε (xε) → w(y
′
∗, η∗ − s)−

w(y
′
∗,−η∗ − s) > 0 if η∗ > 0, for ε small. A contradiction again.

Case 3: tε
ε

= 0.

This is the most complicated case.

Let B+ = B∩{xN > 0}. Set Nε := maxx∈B+ |w0
ε (x)|, and let x̃ε ∈ B̄+ be such that |w0

ε (x̃ε)| = Nε.

Then it is easy to see that

min(|x̃ε − P ε
1 |, |x̃ε − P̄ ε

2 |) ≤ Rε for some R > 0.

Without loss of generality we may assume that |x̃ε − P ε
1 | ≤ Rε. We rescale

x = P̂ ε
1 + εy, w̃0

ε (y) =
1

Nε

w0
ε (P̂

ε
1 + εy). (3.7)

Let P ε
1 = P̂ ε

1 + εζεeN . Then similar to the proof of Case 3 of [32], we conclude that w̃0
ε (y) → c ∂w

∂yN

in C2
loc(R

n), for some c < 0 and moreover,

C−1
0 ≤ ζε

Nε

≤ C0. (3.8)

Next, we let P̂ ε
2 be the projection point of P ε

2 on Π0
N−1 and rescale ŵ0

ε (y) = 1
Nε

w0
ε (P̂

ε
2 + εy). As

in [32], we show that ŵ0
ε (y) → γ ∂w

∂yN
in C2

loc(R
N) for some γ < 0.

Now let xε ∈ Ēε be such that (3.6) holds. Then as before,

min(|xε − P ε
1 |, |xε − P̄ ε

2 |) ≤ Rε
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for some R > 0. We may assume that |xε − P ε
1 | ≤ Rε. Let

x = P̂ ε
1 + εy, xε = P̂ ε

1 + εyε.

Then yε = (y
′
ε, yε,N) → y∗ = (y

′
∗, η∗) with η∗ ≥ 0. Since w̃0

ε (yε) < 0, w̃0
ε (y

′
ε, 0) = 0, we conclude that

η∗ = 0 and by the mean value theorem

∂w̃0
ε

∂yN

(y
′
ε, ξε) < 0

for some ξε ∈ (0, yε,N). By letting ε → 0, we obtain that

0 ≥ lim
ε→0

∂w̃0
ε

∂yN

(y
′
ε, ξε) = c

∂2w

∂y2
N

(y
′
∗, 0) > 0

since c < 0. A contradiction.

The other case |xε − P̄ ε
2 | ≤ Rε can be ruled out in the same way.

This finishes Step 1.

Step 2. Let

θ0 = sup {θ̄|wθ
ε > 0 for x ∈ Σθ and 0 ≤ θ ≤ θ̄}.

By Step 1, θ0 > 0. By the definition of θ0, w
θ0
ε ≥ 0 in Σθ0 and if wθ0

ε (x) > 0 for some x ∈ Σθ0 ,

then wθ0
ε > 0 in Σθ0 by the maximum principle. So θ0 ≥ θε and wθ0

ε ≡ 0 on Σθ0 . Since P ε
1 is a local

maximum point, we see that θ0 ≤ θε. Hence θ0 ≡ θε and wθε
ε (x) ≡ 0 for x ∈ Σθε . Since uε has

exactly one local maximum and one local minimum point, this implies that P ε
1 , P

ε
2 and the origin

must lie on a line.

Step 3: By Step 2, P ε
1 , P

ε
2 and the origin must lie on a line. Without loss of generality, we may

assume that this line is the x1-axis. We now claim that uε is even in xN . In fact, we prove that

w0
ε (x) ≡ 0 on Σ0.

Suppose that there exists ε → 0 such that

Nε = sup
x∈Σ0

|w0
ε (x)| > 0.

Let x̃ε ∈ Σ0 be such that |w0
ε (x̃ε)| = Nε. As before, we may assume that min(|x̃ε−P ε

1 |, |x̃ε−P ε
2 |) ≤

Rε for some R > 0. Without loss of generality, we may assume that |x̃ε − P ε
1 | ≤ Rε. As in Case 3

above, w̃0
ε (y) =

w0
ε (P ε

1+εy)

Nε
→ c ∂w

∂yN
(y) in C2

loc(R
N) for some constant c �= 0. But ∇uε(P

ε
1) = 0 and

hence ∂w̃0
ε

∂yN
(0) = 0, c ∂2w

∂y2
N

(0) = 0 which forces c = 0. A contradiction.

Similarly we can prove that uε is even in xj, j = 2, ..., N − 1.
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4. Uniqueness Proof I: Reduction to Finite-Dimensional Problem

In this section, Section 5 and Section 6, we shall prove the uniqueness of two-peaked nodal

solutions. Our main idea is to show that two-peaked nodal solutions are nondegenerate (in some

symmetry class) and to compute the Morse index of such solutions. We remark that the uniqueness

and Morse index of boundary spikes have been studied in [4] and [51].

We first introduce a general framework. This framework is a combination of the Liapunov-

Schmidt reduction method and the variational principle. The Liapunov-Schmidt reduction method

has been introduced and used in a lot of papers. See [1], [2], [3], [4], [5], [18], [24], [25], [27], [43],

[44], [54], [55] and the references therein. A combination of the Liapunov-Schmidt reduction

method and the variational principle was used in [3], [10], [13], [14], [24] and [25]. We shall follow

the procedure in [24].

Step 1. Choose suitable approximate functions.

Recall that Ω = B. Let w be the unique solution of (2.1). We fix a point P ∈ Ω and introduce

the following functions as suitable approximate functions – the “projection” of w in H1
0 (Ω). This

projection was first introduced in [37] and later studied in [49]. The idea of projecting a function

has been used in other problems as well. See [3], [6], [37], [45], [54], [55] and the references therein.

Let

f(u) = |u|p−1u. (4.1)

We define wε,P to be the unique solution of⎧⎨
⎩ ε2∆wε,P − wε,P + f(w(x−P

ε
)) = 0 in Ω,

wε,P > 0 in Ω, wε,P = 0 on ∂Ω.
(4.2)

Set

w̄ε,P = w(
x − P

ε
), wε,P = w̄ε,P (x) + ϕε,P (x). (4.3)

Then ϕε,P satisfies ⎧⎨
⎩ ε2∆ϕε,P − ϕε,P = 0 in Ω,

ϕε,P = w̄ε,P on ∂Ω.
(4.4)

The asymptotic behavior of ϕε,P has been studied in [37] and is related to the distance function:

For P ∈ Ω we define

dP := d(P, ∂Ω) = 1 − |P |. (4.5)
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For P �= 0, it is easy to compute that

∇P dP = − P

|P | , (4.6)

∂2

∂Pi∂Pj

dP = − 1

|P |
(
δij − PiPj

|P |2
)

, (4.7)

where P = (P1, ..., PN ).

We state the following useful lemma about the properties of ϕε,P and the computations of some

integrals. Its proof is technical and thus delayed to Appendix A.

Lemma 4.1. Let Ω = B and P ∈ Ω, P �= 0.

(1) For ε sufficiently small, we have

ϕε,P (P + εy) = ϕε,P (P )(1 + o(1))e−<∇dP ,y>, for P + εy ∈ Ω̄, (4.8)

ϕε,P (P ) = (cN + o(1))(dP (1 − dP ))−
N−1

2 εN−1e−2dP /ε, (4.9)

where cN > 0 is a generic constant (depending on N only), and∫
Ω

f
′
(w̄ε,P )

∂w̄ε,P

∂Pi

ϕε,P (x)dx

= (−γ1 + o(1))εN−1ϕε,P (P )(∇dP )i + O(e−(2+σ)dP /ε) (4.10)

where (∇dP )i denotes the i−th component of ∇dP (which is −Pi/|P | in our case) and

γ1 =
∫

RN
f(w)e−y1dy > 0, σ = min(p − 1, 1). (4.11)

(2) For ε sufficiently small and P1, P2 ∈ Ω, |P1−P2|
ε

→ +∞, we have∫
Ω

f
′
(w̄ε,P1)w̄ε,P2

∂w̄ε,P1

∂P1,i

= εN−1(−γ1 + o(1))w(
|P1 − P2|

ε
)(∇P1(|P1 − P2|))i + O(e−(1+σ)|P1−P2|/ε), (4.12)

where γ1 is given by (4.11).

Step 2. Finite-dimensional reduction.

We now describe the so-called Liapunov-Schmidt finite dimension reduction procedure. Most

of the material is from Sections 3, 4 and 5 in [24]. See also Sections 4, 5 and 6 in [25].

We first introduce some notations.
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We observe that solving (1.1) is equivalent to finding a zero of the following nonlinear equation:

Sε[u] := ∆u − u + f(u) = 0, u ∈ H2(Ωε) ∩ H1
0 (Ωε), (4.13)

where

f(u) = |u|p−1u, Ωε = {y|εy ∈ Ω}. (4.14)

For any u, v ∈ H1
0 (Ω), we define the inner product and the norm as follows:

< u, v >ε= ε−N
∫
Ω
(ε2∇u · ∇v + u · v) dx, ‖u‖ε =< u, v >1/2

ε .

Fix P = (P1, P2) ∈ Ω × Ω. Let ϕ(P) = ϕ(P1, P2) be defined in (1.3). We assume that

P = (P1, P2) ∈ Λδ = {P ∈ Ω × Ω|ϕ(P) ≥ 2δ}, (4.15)

where δ is a small but fixed positive constant.

Let

wε,P = wε,P1 − wε,P2 . (4.16)

To simplify notations, we use the following simplified symbols:

∂j,i :=
∂

∂Pj,i

, j = 1, 2, i = 1, ..., N.

We remark that the variable of wε,P is in Ω. Sometimes, we also consider wε,P(εy) for y ∈ Ωε

and we denote wε,P(εy) as wε,P as well.

Now we define the approximate kernel and cokernel, respectively, as follows:

Kε,P := span {∂j,iwε,P|j = 1, 2, i = 1, ..., N} ⊂ H2(Ωε) ∩ H1
0 (Ωε), (4.17)

Cε,P := span {∂j,iwε,P|j = 1, 2, i = 1, ..., N} ⊂ L2(Ωε). (4.18)

We also need the following spaces

K⊥
ε,P = {u ∈ H2(Ωε) ∩ H1

0 (Ωε)|
∫
Ωε

u∂j,iwε,P = 0, j = 1, 2, i = 1, ..., N}, (4.19)

C⊥
ε,P = {u ∈ L2(Ωε)|

∫
Ωε

u∂j,iwε,P = 0, j = 1, 2, i = 1, ..., N}. (4.20)

Set for the linear operators

L̃ε,P(φ) = ∆φ − φ + f
′
(wε,P)φ, Lε,P = π⊥

ε,P ◦ L̃ε,P, (4.21)

for φ ∈ H2(Ωε) ∩ H1
0 (Ωε), where π⊥

ε,P is the projection from L2(Ωε) into C⊥
ε,P.

The following lemma can be proved along the line of Propositions 3.1 and 3.2 in [49].
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Lemma 4.2. For ε << 1 and P ∈ Λδ (see (4.15)) the linear operator Lε,P : K⊥
ε,P → C⊥

ε,P is

one-to-one and onto. Moreover, the inverse of Lε,P exists and is bounded uniformly in ε and P.

Next, we have

Lemma 4.3. For ε sufficiently small and P ∈ Λδ, there exists a unique vε,P ∈ K⊥
ε,P such that

Sε(wε,P + vε,P) ∈ Cε,P. (4.22)

Moreover, vε,P is C2 in P and

‖vε,P‖ε ≤ Ce−(1+σ)ϕ(P)/ε (4.23)

‖∂j,ivε,P‖ε ≤ Cε−2e−(1+σ)ϕ(P)/ε, (4.24)

where σ = min(1, p − 1).

Proof: The proof of this Lemma is similar to that of Lemma 2.4 of [53]. �

Step 3. Solve the finite dimensional problem.

Fix any P ∈ Λ2δ. Let vε,P be the unique solution of (4.22) given by Lemma 4.3. Now we define

Mε(P) = Mε(P1, P2) := ε−NJε[wε,P + vε,P] (4.25)

Mε(P) : Λ2δ → R,

where Jε is the energy functional introduced in (1.5) of Section 1.

By Lemma 4.3, Mε(P) ∈ C2(Λ2δ). Then we have the following reduction theorem, whose proof

is similar to that of Proposition 4.1 of [24].

Lemma 4.4. The function uε = wε,Pε + vε,Pε ,Pε ∈ Λ2δ is a critical point of Jε if and only if Pε

is a critical point of Mε(P).

Therefore, to prove the existence and uniqueness of solutions of (1.1), we just need to concentrate

on the study of critical points of Mε(P), which is a finite-dimensional problem. We shall compute

∇Mε(P) and ∇2Mε(P) in the next two sections.
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5. Uniqueness Proof II: computations of ∇Mε(P) and ∇2Mε(P)

In this section, we compute the (first and second order) derivatives of Mε(P).

By Lemma 2.1, if P ε
1 , j = 1, 2 are the two local extrema of uε, then ϕ(P ε

1 , P
ε
2) ≥ δ0 for some

δ0 > 0. Now we choose δ = δ0
4
. By Lemma 4.4, uε = wε,Pε + vε,Pε is a nodal solution with two

spikes if and only if Pε is a critical point of Mε, since Pε ∈ Λ2δ.

The asymptotic expansion of Mε(P) in Λδ is given in Lemma 4.4 of [40].

Lemma 5.1. (Lemma 4.4. of [40].) For ε sufficiently small and P ∈ Λδ, we have

Mε(P) = 2I(w) +
1

2
(γ1 + o(1))(

2∑
i=1

ϕε,Pi
(Pi)) + (γ1 + o(1))w(|P1 − P2|/ε) (5.1)

where

I(w) =
1

2

∫
RN

|∇w|2 +
1

2

∫
RN

w2 − 1

p + 1

∫
RN

|w|p+1 (5.2)

and γ1 is given by (4.11).

We now show that the asymptotic expansion in (5.1) holds true in the C2 sense. Set

M̃ε(P) :=
γ1

2

2∑
j=1

ϕε,Pj
(Pj) + γ1w(|P1 − P2|/ε). (5.3)

By (4.9) of Lemma 4.1 and (2.3), we see that if |P ε
j | ≥ 1

10
, j = 1, 2, then we have

M̃ε(P) :=
cN(γ1 + o(1))

2
ε

N−1
2

2∑
j=1

c(P ε
j )e

−2dPε
j
/ε

(5.4)

+AN(γ1 + o(1))ε
N−1

2 (|P1 − P2|)−N−1
2 e−|P1−P2|/ε,

where the distance function dP is given in (4.5), cN is given in (4.9) of Lemma 4.1, AN > 0 is

given by (2.3), and

c(P ) = (dP (1 − dP ))−
N−1

2 . (5.5)

The following lemma is our key estimate.

Lemma 5.2. Suppose that Pε ∈ Λδ and ε is sufficiently small.

(1) If |P ε
j | ≥ d0 for some j and d0 > 0, then we have

∂j,iMε(P) = ∂j,iM̃ε(P) + O(M̃ε(P)), j = 1, 2, i = 1, ..., N. (5.6)
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(2) Suppose that Pε is a critical point of Mε(P) such that |P ε
j | ≥ d0, j = 1, 2 for some d0 > 0.

Then we have

∂l,m∂j,iMε(P)
∣∣∣
P=Pε

= ∂l,m∂j,iM̃ε(P)
∣∣∣
P=Pε

+O(ε−1M̃ε(P
ε)), j, l = 1, 2, i,m = 1, ..., N.

(5.7)

More precisely, we have

∂l,m∂j,iMε(P)
∣∣∣
P=Pε

= εN−2(γ1 + o(1))w(|P ε
1 − P ε

2 |/ε)eε
jl,meε

jl,i + εN−2(γ1 + o(1))ϕε,P ε
j
(P ε

j )eε
j,ie

ε
l,mδjl (5.8)

where

eε
j =

P ε
j

|P ε
j |

, eε
jk =

P ε
j − P ε

k

|P ε
j − P ε

k |
, j �= k, (5.9)

and eε
j,i and eε

jk,i denote the i−th component of the vectors eε
j and eε

jk, respectively.

The proof of Lemma 5.2 is very technical and will be presented in Appendix B.

6. uniqueness of uε

In this section, we prove the uniqueness of the two-peaked nodal solution uε for ε sufficiently

small. Let uε be a two-peaked nodal solution whose local maximum point and local minimum

points are P̃ ε
j , j = 1, 2, respectively.

By MMP (Section 3), the solution uε is even in xj, j = 2, ..., N . Let

H2
s (Ωε) = {u ∈ H2(Ωε) ∩ H1

0 (Ωε)|u is even with respect to xj, j = 2, ..., N}. (6.1)

Consider the following minimization problem

min
(P1,P2)∈Λ̂2δ

‖uε − wε,P1 + wε,P2‖L2(Ωε)
(6.2)

where

Λ̂2δ = {(P1, P2) |P ∈ Λ2δ, Pj,i = 0, i = 2, ..., N, j = 1, 2}. (6.3)

It is easy to see that the minimum in (6.2) is attained (say by Pε) and thus we have

uε = wε,Pε + φε (6.4)

where Pε ∈ Λ̂δ, φε ∈ H2
s (Ωε). Moreover, φε ∈ K⊥

ε,Pε . Since

S[wε,Pε + φε] = 0 ∈ Cε,Pε , φε ∈ K⊥
ε,Pε ,
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by Lemma 4.3, we see that

φε = vε,Pε , (6.5)

where vε,Pε is defined by Lemma 4.3. (Note that P ε
j may not be a local maximum or local minimum

point of uε. But it is easy to show that up to a permutation, P ε
j = P̃ ε

j + o(1), j = 1, 2.)

For P ∈ Λ̂δ, we may define L = (l1, l2), where l1 = P1,1, l2 = P2,1 and

M̂ε(L) = Mε(P). (6.6)

Similar to Lemma 4.4, we have that Lε is a critical point of M̂ε(L) if and only if uε = wε,Pε + vε,Pε

is a critical point of Jε.

To avoid clumsy notation, we drop the hat from now on. Thus our problem is reduced to a

two-dimensional problem. By Lemma 2.1, we only need to prove the uniqueness of the critical

point of Mε(L) for L in the set

ω =
{
(l1, l2)||l1 − 1

2
| ≤ δ, |l2 +

1

2
| ≤ δ

}
,

which is a two-dimensional problem.

We begin with the following lemma which computes how much Lε differs from L0 = (1
2
,−1

2
).

This is a refinement of (2.7) of Lemma 2.1. This kind of estimate is needed for the uniqueness

proof. See [5] and [51].

Lemma 6.1. Let Lε = (lε1, l
ε
2) be as above. Then there exists a unique constant a such that

lε1 =
1

2
+ εa + o(ε), lε2 = −1

2
− εa + o(ε). (6.7)

Proof: Our main tool is (1) of Lemma 5.2. Note that Pε = (P ε
1 , P

ε
2), P ε

j = (lεj, 0, ..., 0) is a critical

point of Mε. By Lemma 2.1, lε1 → 1
2
, lε2 → −1

2
. Now adding the two equations in (5.6) (and using

(5.4)), we obtain that

2∑
j=1

e−2|P ε
j |/ε P ε

j

|P ε
j |

+ o(
2∑

j=1

e−2|P ε
j |/ε) = 0. (6.8)

which implies that

|P ε
2 | = |P ε

1 | + o(ε). (6.9)

Hence we deduce that

lε1 = −lε2 + o(ε). (6.10)
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Next we examine equation (5.6) at j = 1. We have

P ε
1

|P ε
1 |

+ a0e
(2dPε

1
−|P ε

2−P ε
1 |)/ε P ε

2 − P ε
1

|P ε
2 − P ε

1 |
= o(1),

where a0 > 0 is a generic constant. So we obtain

a0e
(2dPε

1
−|P ε

2−P ε
1 |)/ε

= 1 + o(1),

and hence

|P ε
2 − P ε

1 | = 2dP ε
1

+ εa0 + o(ε), (6.11)

where a0 = log a0 is a generic constant. From (6.10) and (6.11), we see that Lemma 6.1 holds.

�
By Lemma 6.1, any critical point Lε of Mε(L) in Bδ(L

0) must satisfy Lε = L0 + εa + o(ε) for

some fixed a = (a,−a). Let Qε = L0 + εa.

Our next lemma shows that every critical point Lε must be nondegenerate.

Lemma 6.2. Let Lε ∈ Bδε(Q
ε) be a critical point of Mε(L). Then for ε sufficiently small, we have

2∑
j,l=1

∂l∂jMε(L)
∣∣∣
L=Lε

ηlηj ≥ CεN−2e−2ϕ(Pε)/ε|η|2 (6.12)

where C is independent of ε, η = (η1, η2), and |η|2 = η2
1 + η2

2.

Proof: We have by Lemma 5.2 (2) (for i = m = 1)

2∑
j,l=1

∂l∂jMε(L)
∣∣∣
L=Lε

ηlηj

= (γ1 + o(1))εN−2[ϕε,P ε
1
(P ε

1)|η1|2 + ϕε,P ε
2
(P ε

2)|η2|2] (6.13)

+(γ1 + o(1))εN−2w(|P ε
1 − P ε

2 |/ε)(1 + o(1))|η1 − η2|2.
Since Lε ∈ Bδε(Q

ε), |Lε − Qε| ≤ εδ, we have

ϕε,P ε
j
(P ε

j ) ∼ w(|P ε
1 − P ε

2 |/ε), j = 1, 2.

(6.13) shows that
2∑

j,l=1

∂l∂jMε(L)
∣∣∣
L=Pε

ηlηj

≥ CεN−2e−2ϕ(Pε)/ε|η|2 (6.14)

for some C > 0 independent of ε.
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This proves the lemma.

�
The inequality (6.12) shows that the matrix (∂l∂jMε(L)

∣∣∣
L=Lε

) is positive definite. Thus the

Morse index is 0.

Finally we have

Lemma 6.3. For δ > 0 small, there exists a unique critical point of Mε(L) over Bδε(Q
ε).

Proof:

By Lemma 2.2, there exists a critical point Lε of Mε(L). By Lemma 6.1, Lε = L0 + εa + o(ε)

and any other critical point of Mε(L) is in Bδε(Q
ε).

We now show that Lε is unique.

By Lemma 6.2, there is only a finite number of critical points of Mε(L) in Bδε(Q
ε) (since each

critical point is nondegenerate). Let kε be the number of critical points. At each critical point,

we have by Lemma 6.2,

deg(∇Mε, Bδiε(Q
ε
i), 0) = (−1)0 = 1,

where δi > 0 are small constants so that Bδiε(Q
ε
i) contains only one critical point (i.e. Qε

i) of

Mε(L).

Hence by the additivity of the degree we have

deg(∇Mε, Bδε(Q
ε), 0) = kε(−1)0. (6.15)

On the other hand, it is easy to see that M̃ε(L) has only one critical point in Bδε(Q
ε) (because

of the nondegeneracy of (∇2M̃ε(P))). For L ∈ Bδε(Q
ε), we have

e−2dPi
/ε = (1 + O(δ))e

−2dQε
i , w(|P1 − P2|/ε) = (1 + O(δ))w(|Qε

1 − Qε
2|/ε),

Mε(L) = (1 + O(δ))Mε(Q
ε).

By (1) of Lemma 5.2, we have ∇Mε(L) = ∇M̃ε(L) + O(M̃ε(L)). Note that ∇Mε(L) �= 0 and

∇M̃ε(L) �= 0 on ∂Bδε(Q
ε). By a continuity argument, we obtain that

deg(∇Mε, Bδε(Q
ε), 0) = deg(∇M̃ε(L), Bδε(Q

ε), 0) = 1. (6.16)

Comparing (6.15) and (6.16), we deduce that kε = 1.

�
Lemma 6.3 shows that the two-peaked nodal solution is unique, up to a rotation, provided that

ε is sufficiently small.
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7. The Neumann Case: Proof of Theorem (1.2)

In this section, we consider the Neumann case. Note that in [41], the existence of a nodal

solution uε with unique local maximum point P ε
1 ∈ ∂Ω (having positive value) and unique local

minimum point P ε
2 ∈ ∂Ω (having negative value) is proved. Moreover,

|P ε
1−P ε

2 |
ε

→ +∞.

We now use MMP to prove the following result.

Lemma 7.1. Let P ε
1 , P

ε
2 be a local maximum and a local minimum point of uε, respectively. Then,

for ε sufficiently small, P ε
1 = −P ε

2 . Moreover, suppose that P ε
1 , P

ε
2 lie on the x1− axis, then uε is

even in xj, j = 2, ..., N .

Proof: The proof is similar to that in Section 3. Suppose P ε
1 , P

ε
2 , and the origin are not on

a line. Note that since P ε
1 , P

ε
2 ∈ ∂Ω, we may assume that P ε

1 = (
√

1 − t2ε , 0, ..., 0, tε), P
ε
2 =

(
√

1 − t2ε , 0, ..., 0,−tε) with tε > 0, tε
ε
→ +∞. We may just follow the proof of Case 1 in Sec-

tion 3. The rest is exactly the same.

�
¿From Lemma 7.1, we see that P ε

1 = −P ε
2 . Without loss of generality, we may assume that

P ε
1 = (1, 0, ...., 0), P ε

2 = (−1, 0, ..., 0).

Our next result shows the existence of solutions having the properties of Theorem 1.2.

Lemma 7.2. There exists a two-peaked nodal solution ûε to (1.1) such that ûε is even in xj, j =

2, ..., N and is odd in x1. Moreover, the local maximum point P ε
1 and the local minimum point P ε

2

of ûε satisfy: P ε
1 = −P ε

2 , P
ε
1 = (1, 0, ..., 0).

Proof: Let Ω+ = B ∩ {x1 > 0} and let vε be the least energy positive solution of the following

mixed Neumann-Dirichlet problem⎧⎨
⎩ ε2∆u − u + up = 0, u > 0 in Ω+,

∂u
∂ν

= 0 on ∂(Ω+) ∩ ∂(B), u = 0 on ∂(Ω+) ∩ {x1 = 0}. (7.1)

The existence of vε is standard: We consider the following energy functional

Eε[u] =
ε2

2

∫
Ω+

|∇u|2 +
1

2

∫
Ω+

|u|2 − 1

p + 1

∫
Ω+

up+1
+ ,

where u+ = max(u, 0), u ∈ H1
0,s,Γ(Ω+) = H1(Ω+)∩{u is even in xj, j = 2, ..., N, and u = 0 on Γ},

and Γ = ∂(Ω+)∩{x1 = 0}. By arguments similar to [35], there exists a mountain-pass solution vε

which satisfies (7.1). Moreover, for ε sufficiently small, vε has only one local maximum which lies
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on the boundary. By the symmetry of vε, the only maximum point of vε must lie on the x1−axis

and hence equals (1, 0, ..., 0). Now let

ûε =

⎧⎨
⎩ vε(x1, x2, ..., xN ), if x1 ≥ 0,

−vε(−x1, x2, ..., xN ), if x1 < 0.
(7.2)

It is easy to see that ûε is a two-peaked nodal solution of (1.1) and ûε satisfies the properties of

Lemma 7.2.

�
It remains to prove that uε = ûε. In this case, it is easier that for the Dirichlet problem. The

proof is similar to that in [32], where the uniqueness of two-boundary (positive) solutions is proved.

8. Appendix A: Proof of Lemma 4.1

In this appendix, we prove Lemma 4.1 of Section 4 which follows from computations done in

[52].

As in [37], set ϕε,P = e−Ψε,P (x)/ε, where Ψε,P (x) satisfies⎧⎨
⎩ ε2∆Ψε,P (x) − |∇Ψε,P (x)|2 + 1 = 0 in Ω,

Ψε,P = −ε log w(x−P
ε

) on ∂Ω.
(8.1)

By Lemma 3.6 of [37], we see that

Ψε,P (P ) → 2dP as ε → 0. (8.2)

It is also proved in [52] that

∂Ψε,P (x)

∂ν
= (−1 + O(ε))

∂

∂ν
|x − P | = (−1 + O(ε))

< x − P, ν >

|x − P | on ∂Ω. (8.3)

To compute the exact asymptotic expansion of ϕε,P (P ), we follow [52]. Let Gε(x, z) be the

Green’s function which is the unique solution of the problem⎧⎨
⎩ ε2∆Gε(x, z) − Gε(x, z) + δ(z − x) = 0 in Ω,

Gε(x, z) = 0 on ∂Ω.
(8.4)

Then we have

ϕε,P (x) =
∫

∂Ω

∂

∂ν
Gε(x, z)ϕε,P (z)dz. (8.5)

We decompose

Gε(x, z) = Kε(|x − z|) − Hε(x, z)

where Kε(r) is the fundamental solution of ε2∆ − 1 in RN\{0}.
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Then Hε satisfies ⎧⎨
⎩ ε2∆Hε − Hε = 0 in Ω,

Hε(x, z) = −Kε(|x − z|) on ∂Ω.
(8.6)

By using (8.3), it has been shown in [52] that

∂Hε

∂ν
= (−1 + o(1))

∂Kε

∂ν
. (8.7)

So we have

ϕε,P (P ) =
∫

∂Ω
(2 + o(1))

∂

∂ν
Kε(|z − P |)ϕε,P dz

= (cN + o(1))ε−1
∫

∂Ω
(

ε

|z − P |)
N−1e−2|z−P |/ε < z − P, ν >

|z − P | dz

= (cN + o(1))εN−2
∫

∂Ω
(

1

|z − P |)
N−1e−2|z−P |/ε < z − P, ν >

|z − P | dz. (8.8)

Let P be such that |P | ≥ d0 for some d0 > 0. Then the integral in (8.8) is a typical Laplace

integral and can computed by the classical Laplace method: namely, we let z =
√

εy and then

obtain

ϕε,P (P ) = (cN + o(1))(dP (1 − dP ))−
N−1

2 ε
3N
2

− 5
2 e−2dP /ε

for some positive constant cN > 0. This proves (4.9) of Lemma 4.1.

Next we prove (4.8) of Lemma 4.1. To this end, we note that for x = P + εy

ϕε,P (x) =
∫

∂Ω

∂

∂ν
Gε(x, z)ϕε,P (z)dz

= ε−1(cN + o(1))
∫

∂Ω
(

ε

|z − x|)
−N−1

2 (
ε

|z − P |)
−N−1

2 e−
|z−x|+|z−P |

ε
< z − P, ν >

|z − P | dz

= ε−1(cN + o(1))
∫

∂Ω
(

ε

|z − x|)
−N−1

2 (
ε

|z − P |)
−N−1

2 e−
2|z−P |

ε e−
<z−P,y>

|z−P |
< z − P, ν >

|z − P | dz

= (1 + o(1))ϕε,P (P )e−<∇dP ,y>

which proves (4.8) of Lemma 4.1.

Finally, we prove (4.10) and (4.12) of Lemma 4.1.

For P ∈ Ω, we define

Ωε,P := {y|εy + P ∈ Ω}. (8.9)

If P = 0, we denote Ωε,P as Ωε.

For P ∈ Ω, we have ∫
Ω

f
′
(w̄ε,P )

∂w̄ε,P

∂Pi

ϕε,P (x)dx
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= (−1 + o(1))ϕε,P (P )εN−1
∫

RN
f

′
(w)

∂w

∂yi

e−<∇dP ,y>dy (by Lemma 4.1 (4.8))

= (−γ1 + o(1))εN−1ϕε,P (P )(∇dP )i + O(e−(2+σ)dP /ε), (8.10)

where γ1 is given in (4.11). This proves (4.10).

For P1, P2 ∈ Ω with |P1 − P2|/ε → +∞, we have∫
Ω

f
′
(w̄ε,P1)w̄ε,P2

∂w̄ε,P1

∂P1,i

= (−1 + o(1))εN−1
∫
Ωε,P1

f
′
(w(y))

∂w

∂yi

w(y +
P1 − P2

ε
)dy + O(e−(1+σ)|P1−P2|/ε)

= εN−1
∫

RN
f(w)

∂

∂yi

w(y +
P1 − P2

ε
)dy + O(e−(1+σ)|P1−P2|/ε)

= εN−1(−γ1 + o(1))w(
|P1 − P2|

ε
)(∇P1(|P1 − P2|))i + O(e−(1+σ)|P1−P2|/ε). (8.11)

This proves (4.12).

�

9. Appendix B: Proof of Lemma 5.2

In this appendix, we prove Lemma 5.2.

Proof of (1) of Lemma 5.2: Observe that

∇j,iMε(P) =< wε,P + vε,P, ∂j,i(wε,P + vε,P) >ε −ε−N
∫
Ω

f(wε,P + vε,P)∂j,i(wε,P + vε,P)

=< wε,P, ∂j,i(wε,P) >ε −ε−N
∫
Ω

f(wε,P)∂j,i(wε,P)

+ < vε,P, ∂j,i(wε,P) >ε −ε−N
∫
Ω

f
′
(wε,P)vε,P∂j,i(wε,P)

+ < wε,P, ∂j,i(vε,P) >ε −ε−N
∫
Ω

f(wε,P)∂j,i(vε,P)

+ < vε,P, ∂j,i(vε,P) >ε −ε−N
∫
Ω

f(wε,P)∂j,i(vε,P) + O(e−(2+σ)ϕ(P)/ε)

=< wε,P, ∂j,iwε,P >ε −ε−N
∫
Ω

f(wε,P)∂j,i(wε,P) + O(e−(2+σ)ϕ(P)/ε)

= ε−N
∫
Ω
[(f(w̄ε,P1) − f(w̄ε,P2) − f(wε,P1 − wε,P2)](∂j,iwε,P) + O(e−(2+σ)ϕ(P)/ε)
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= ε−N
∫
Ω
[

2∑
l=1

(−1)l−1(f(w̄ε,Pl
) − f(wε,Pl

)) + (f
′
(wε,P1)wε,P2 − f

′
(wε,P2)wε,P1)]∂j,iwε,P

+O(e−(2+σ)ϕ(P)/ε)

= ε−N
∫
Ω
[f(w̄ε,Pj

) − f(wε,Pj
)]∂j,iwε,Pj

+ ε−N
∑
l �=j

∫
Ω

f
′
(wε,Pj

)wε,Pl
∂j,iwε,Pj

+ O(e−(2+σ)ϕ(P)/ε).

=
∫
Ωε,Pj

f
′
(w̄ε,Pj

)(−ϕε,Pj
)∂j,iw̄ε,Pj

+
∑
l �=j

∫
Ωε,Pj

f
′
(w̄ε,Pj

)w̄ε,Pl
∂j,iw̄ε,Pj

+ O(e−(2+σ)ϕ(P)/ε)
(9.1)

Since |P ε
j | ≥ d0 for some d0 > 0, (9.1) equals

εN−1(γ1 + o(1))ϕε,Pj
(Pj)(∇dPj

)i + εN−1(γ1 + o(1))
∑
l �=j

w(|Pj − Pl|/ε)(∇|Pj − Pl|)i

(9.2)

by (4.10) and (4.12) of Lemma 4.1.

By using Lemma 4.1, we see that (5.6) holds.

�

Proof of (2) of Lemma 5.2: Let Pε be a critical point of Mε(P) in Λδ such that |P ε
j | ≥ d0, j = 1, 2

for some d0 > 0. We now expand,

∂l,m∂j,iMε(P)
∣∣∣
P=Pε

=< ∂l,m(wε,P + vε,P), ∂j,i(wε,P + vε,P) >ε |P=Pε

+ < wε,P + vε,P, ∂l,m∂j,i(wε,P + vε,P) >ε |P=Pε

−ε−N
∫
Ω

f
′
(wε,Pε + vε,Pε)∂l,m(wε,P + vε,P)|P=Pε∂j,i(wε,P + vε,P)|P=Pε

−ε−N
∫
Ω

f(wε,Pε + vε,Pε)∂l,m∂j,i(wε,P + vε,P)|P=Pε

=< ∂l,m(wε,P + vε,P), ∂j,i(wε,P + vε,P) >ε |P=Pε

−ε−N
∫
Ω

f
′
(wε,Pε + vε,Pε)∂l,m(wε,P + vε,P)|P=Pε∂j,i(wε,P + vε,P)|P=Pε

(since Pε is a critical point of Mε(P))

=< ∂l,mwε,P, ∂j,iwε,P >ε |P=Pε − ε−N
∫
Ω

f
′
(wε,Pε + vε,Pε)∂l,mwε,P|P=Pε∂j,iwε,P|P=Pε

+ < ∂l,mwε,P, ∂j,ivε,P >ε |P=Pε − ε−N
∫
Ω

f
′
(wε,Pε + vε,Pε)∂l,mwε,P|P=Pε∂j,ivε,P|P=Pε

+ < ∂l,mvε,P, ∂j,iwε,P >ε |P=Pε − ε−N
∫
Ω

f
′
(wε,Pε + vε,Pε)∂l,mvε,P|P=Pε∂j,iwε,P|P=Pε

+ < ∂l,mvε,P, ∂j,ivε,P >ε |P=Pε − ε−N
∫
Ω

f
′
(wε,Pε + vε,Pε)∂l,mvε,P|P=Pε∂j,ivε,P|P=Pε

= I1 + I2 + I3 + I4



UNIQUENESS 25

where Ii, i = 1, ..., 4 are defined at the last equality.

We now estimate each term. By Lemma 4.3,

I4 = O(‖∂l,mvε,Pε‖ε‖∂j,ivε,Pε‖ε) = O(e−(2+σ)ϕ(Pε)/ε). (9.3)

Certainly the estimate of I2 is the same as that of I3. We consider I2:

I2 = ε−N
∫
Ω
[f(w̄ε,P ε

l
)∂l,mw̄ε,P ε

l
− f(wε,Pε + vε,Pε)∂l,mwε,P ε

l
]∂j,iwε,P ε

j
= O(e−(2+σ)ϕ(Pε)/ε).

(9.4)

Similarly, we have

I3 = O(e−(2+σ)ϕ(Pε)/ε). (9.5)

Hence it remains to compute I1 only. Without loss of generality, we may assume that j = 1.

We consider two cases separately: l = 2 and l = 1.

When l = 2, we have by Lemma 4.1

I1 = ε−N
∫
Ω
[−f

′
(w̄ε,P ε

2
)∂2.mw̄ε,P ε

2
+ f

′
(wε,Pε)∂2,mwε,P ε

2
]∂1,iwε,P ε

1

= −ε−N
∫
Ω
[f

′
(w̄ε,P ε

2
)∂2,mw̄ε,P ε

2
− (f

′
(wε,P ε

2
) + f

′
(wε,P ε

1
))∂2,mwε,P ε

2
]∂1,iw̄ε,P ε

1
+ O(e−(2+σ)ϕ(Pε)/ε)

= −ε−N
∫
Ω
[f

′
(w̄ε,P ε

2
)∂2,mw̄ε,P ε

2
− f

′
(wε,P ε

2
)∂2,mwε,P ε

2
]∂1,iw̄ε,P ε

1

+ε−N
∫
Ω

f
′
(wε,P ε

1
)∂2,mwε,P ε

2
∂1,iw̄ε,P ε

1
+ O(e−(2+σ)ϕ(Pε)/ε)

= ε−N
∫
Ω

f
′
(wε,P ε

1
)∂2,mwε,P ε

2
∂1,iw̄ε,P ε

1
+ O(e−(2+σ)ϕ(Pε)/ε)

= ε−2w(
|P ε

1 − P ε
2 |

ε
)
∫
Ωε,Pε

1

f
′
(w)

∂w

∂yi

e−<eε
12,y>(eε

12)m + O(e−(2+σ)ϕ(Pε)/ε)

= ε−2w(|P ε
1 − P ε

2 |/ε)(γ1 + o(1))(eε
12)m(eε

12)i + O(e−(2+σ)ϕ(Pε)/ε) (9.6)

For l = 1, we have

I1 = ε−N
∫
Ω
[f

′
(w̄ε,P ε

1
)∂1,mw̄ε,P ε

1
− f

′
(wε,Pε)∂1,mwε,P ε

1
]∂1,iwε,P ε

1

= ε−N
∫
Ω
[f

′
(w̄ε,P ε

1
)∂1,mw̄ε,P ε

j
− f

′
(wε,P ε

1
)∂1,mwε,P ε

1
]∂1,iwε,P ε

1

−
∫
Ω

f
′′
(w̄ε,P ε

1
)wε,P ε

2
∂1,mwε,P ε

1
∂1,iwε,P ε

1
+ O(e−(2+σ)ϕ(Pε)/ε)

= I1,1 − I1,2.

For I1,1, we have

I1,1 = ε−N
∫
Ω
[∂1,mf(w̄ε,P ε

1
) − ∂1,mf(wε,P ε

1
)]∂1,iw̄ε,P ε

1
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= ε−N
∫
Ω
[(− ∂

∂xm

f(w̄ε,P ε
1
) − f(wε,P ε

1
))](− ∂

∂xi

w̄ε,P ε
1

+ O(e−(2+σ)ϕ(Pε)/ε)

= ε−N
∫
Ω
(f(wε,P ε

1
) − f(w̄ε,P ε

1
)(

∂2

∂xi∂xm

w̄ε,P ε
1
) + O(e−(2+σ)ϕ(Pε)/ε)

= ε−2
∫
Ωε,Pε

1

f
′
(w)(y)ϕε,P ε

1
(P ε

1 + εy)
∂2w

∂yi∂ym

+ O(e−(2+σ)ϕ(Pε)/ε)

= ε−2ϕε,P ε
1
(P ε

1)
∫

RN
f

′
(w)e

−<∇dPε
1
,y> ∂2w

∂yi∂ym

dy + O(e−(2+σ)ϕ(Pε)/ε)

(by (4.8) of Lemma 4.1)

= ε−2ϕε,P ε
1
(P ε

1)
∫

RN
(−f

′′
(w)

∂w

∂yi

∂w

∂ym

e
−<∇dPε

1
,y>

dy + O(e−(2+σ)ϕ(Pε)/ε)

= ε−2ϕε,P ε
1
(P ε

1)e
ε
1,ie

ε
1,m(γ1 + o(1)). (9.7)

For I1,2, we have

I1,2 = ε−N
∫
Ω

f
′′
(w̄ε,P ε

1
)w̄ε,P ε

2
∂1,mw̄ε,P ε

1
∂1,iw̄ε,P ε

1
+ O(e−(2+σ)ϕ(Pε)/ε)

= ε−2
∫

RN
f

′′
(w)

∂w

∂yi

∂w

∂ym

w(y +
P ε

1 − P ε
2

ε
)dy + O(e−(2+σ)ϕ(Pε)/ε)

= ε−2w(
|P ε

1 − P ε
2 |

ε
)eε

12,ie
ε
12,m(γ1 + o(1)). (9.8)

Combining all together, we have

∂l,m∂j,iMε(P)
∣∣∣
P=Pε

= ε−2(γ1 + o(1))w(
|P ε

1 − P ε
2 |

ε
)eε

jl,meε
jl,i

+ε−2(γ1 + o(1))ϕε,P ε
j
(P ε

j )eε
j,ie

ε
l,mδjl

which is exactly (5.7).
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