
ON THE STATIONARY CAHN-HILLIARD EQUATION:
INTERIOR SPIKE SOLUTIONS

JUNCHENG WEI AND MATTHIAS WINTER

Abstract. We study solutions of the stationary Cahn-Hilliard

equation in a bounded smooth domain which have a spike in the

interior. We show that a large class of interior points (the “non-

degenerate peak” points) have the following property: there exist

such solutions whose spike lies close to a given nondegenerate peak

point. Our construction uses among others the methods of viscos-

ity solution, weak convergence of measures and Liapunov-Schmidt

reduction.

1. Introduction

In this paper, we continue our investigation on stationary solutions

of the Cahn-Hilliard Equation.

The Cahn-Hilliard equation is a well-known macroscopic field theo-

retical model of processes such as phase separation in a binary alloy

(see [7]). It is derived from a Helmholtz free energy

E(u) =

∫
Ω

[
F

(
u(x)

)
+

1

2
ε2|�u(x)|2]dx

where Ω is a bounded smooth domain corresponding to the region

occupied by the body, u(x) is a conserved order parameter representing

for example the concentration; ε is the range of intermolecular forces,

the gradient term is a contribution to the free energy coming from

spatial fluctuations of the order parameter and F (u) is the free energy
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density which has a double well structure at low temperatures (for

example, F (u) = (1 − u2)2).

We assume that the mass m = 1
|Ω|

∫
Ω

udx is conserved. Thus, a

stationary solution of E(u) under m = 1
|Ω|

∫
Ω

udx satisfies the following

Euler-Lagrange equation

(1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2�u − f(u) = λε in Ω,

∂u
∂ν

= 0 on ∂Ω,∫
Ω

u = m|Ω|

where f(u) = F ′(u), λε is a constant and ν(x) is the unit outer normal

at x ∈ ∂Ω.

Equation (1.1) has been studied extensively by many authors. It was

first observed by Modica in [22] that global minimizers uε of E(u) under

m = 1
|Ω|

∫
Ω

udx have a transition layer. Namely, there exists an open set

Γ ⊂ Ω such that if a sequence uε converges then uε −→ 1 on Ω\Γ̄, uε −→
−1 on Γ as ε −→ 0 and ∂Γ ∩ Ω is a minimal surface having constant

mean curvature. Kohn and Sternberg in [18] studied local minimizers

of the functional without mass conservation by using Γ-convergence.

Caffarelli and Córdoba proved that in this situation the level sets of

global minimizers converge uniformly to the limit surface [6]. Chen

and Kowalczyk [9] proved the existence of local minimizers using a

geometric approach. The dynamics of the transition layer solution has

been studied by many authors, e.g. Chen [8], Alikakos, Bates and Fusco

[3], Alikakos, Bates and Chen [2], Alikakos, Fusco and Kowalczyk [4],

Pego [28], etc.

To study the global dynamics associated with (1.1), it is very impor-

tant to study stationary solutions of (1.1), as this has been illustrated

by Bates and Fife [5], Alikakos, Fusco and Kowalczyk [4].

In particular, Bates and Fife [5] studied nucleation phenomena and

proved the existence of three monotone nondecreasing stationary solu-

tions when m is in the metastable region (
√

1
3

< m < 1)

(a) the constant solution u ≡ m,
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(b) a boundary layer (spike) solution where the layer is located at

the left-hand endpoint,

(c) a transition layer solution with a layer in the interior of the

material.

In the one dimensional case, Grinfeld and Novick-Cohen in [14]

and [15] completely determined all stationary solutions and proved

some of their qualitative properties. In the higher dimensional case

(N � 2), little is known about stationary solutions except for the tran-

sition layer solution. In [35], we first established the existence of a

boundary spike layer solution under some condition for the boundary.

More precisely, suppose P0 is a boundary point such that �τP0
H(P0) =

0, (�2
τP0

H(P0)) := GB(P0) is nondegenerate, where H(P0) is the mean

curvature function at P0 and ∇τP0
is the tangential derivative at P0,

then for ε sufficiently small there exists a solution uε of (1.1) such that

uε(x) → m for Ω̄\{P0}. Moreover, uε has only one local minimum Pε

where Pε ∈ ∂Ω, Pε −→ P0 and uε(Pε) −→ β < m. Later in [36] we con-

structed multiple boundary spike solutions at multiple nondegenerate

critical points of H(P ).

In this paper, we are concerned with the existence of interior spike

layer solutions. Intuitively interior spike layer solutions are more re-

lated to the geometry of Ω while boundary spike layer solutions are

more related to the geometry of ∂Ω. We shall establish the existence

of interior spike layer solutions under some geometric assumptions.

From now on, we always assume that m > 0 and that m is in the

metastable region, i.e., f ′(m) > 0. For F (u) = (1 − u2)2 this means

that
√

1
3

< m < 1. For m < 0 results analogous to ours are true, but

with the signs of the values reversed.

To state our results, we first transform equation (1.1) as follows. For

σ small enough let τσ be the unique solution of

f(m − τσ) − f(m) − σ = 0
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which lies near zero. Obviously

τσ = − σ

f ′(m)
+ O(σ2).

With this notation we further define

gσ(v) = f(m − τσ − v) − f(m) − σ

= −pσv + hσ(v)

where

v = m − τσ − u,

pσ = f ′(m − τσ),

hσ(v) = f(m − τσ − v) − f(m) − σ + f ′(m − τσ)v.

By the choice of hσ

hσ(v) = O(v2)

as v → 0. Note that in particular

g0(v) = f(m − v) − f(m)

= −p0v + h0(v)

where

v = m − u,

p0 = f ′(m),

h0(v) = f(m − v) − f(m) + f ′(m)v.

Then equation (1.1) becomes

(1.2)

⎧⎨
⎩ε2�v − p0v + h0(v) − 1

|Ω|
∫

Ω
h0(v) = 0 in Ω,

∂v
∂ν

= 0 on ∂Ω.
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We next introduce some notations. Assume that Ω is such that

for each P ∈ Ω the set Bd(P,∂Ω)(P ) ∩ ∂Ω has only a finite number of

connected components. Let

ΛP :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dµp(z) ∈ M(∂Ω)

∣∣∣∣∣
∃εk −→ 0 such that

dµP (z) = lim
εk→0

e
− |z−P |

εk dz∫
∂Ω

e
− |z−P |

εk dz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where M(∂Ω) is the set of all bounded measures on ∂Ω and the con-

vergence is weak convergence of measures. Certainly supp(dµP ) ⊂
B̄d(P,∂Ω)(P ) ∩ ∂Ω.

A point P ∈ Ω is called a nondegenerate peak point if

(1) ΛP = {dµP (z)}, i.e. the set ΛP contains exactly one element.

(2) ∃a ∈ RN such that∫
∂Ω

e<a,z−P>(z − P )dµP (z) = 0

and ∫
∂Ω

e−
|z−P |

ε e<a,z−P>(z − P ) dz∫
∂Ω

e−
|z−P |

ε dz
= O(εα0)

for some α0 > 0.

(3) The matrix G(P ) :=
(∫

∂Ω
e<a,z−P>(zi − Pi)(zj − Pj)dµP (z)

)
is

nondegenerate (where a is the same vector as in (2)).

Remarks: (1) The vector a in (2) and (3) is unique by [32].

(2) In [30] and [31], M.J. Ward has derived conditions similar to

(2) for bubble-like solutions of singular perturbation problems. His

approach is by asymptotic expansion and he does not give a rigorous

construction of solutions.

The simplest example is when Ω = BR(0), P = 0. In this case,

dµ0(z) = 1
|BR(0)|dz, a = 0 and∫

∂BR(0)

zdµp(z) = 0, G(0) = (

∫
∂BR(0)

zizjdµp(z)) =
1

|BR(0)|I

where I is the identity matrix. Hence 0 is a “nondegenerate peak”

point.
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A more geometric characterization of a nondegenerate peak point is

the following fact: P is a nondegenerate peak point if and only if P ∈
int (conv(supp (dµP ))) where int (conv(supp (dµP ))) is the interior of

the convex hull of the support of dµP .

For example, let Ω be a convex domain. Let P ∈ Ω be such that

Bd(P,∂Ω)(P ) ∩ ∂Ω contains at least three nondegenerate points (i.e.,

Bd(P,∂Ω)(P ) contacts at ∂Ω nondegenerately) then P is a nondegenerate

peak point.

A nontrivial example of a nonconvex domain case is the following

dumbell (see Figure 1).

1 P2P0
 P

Figure 1. Dumbell Domain

The two centers are nondegenerate peak points as has been shown

in [33].

To accommodate more general nonlinearities we assume that for all

σ > 0 which are sufficiently small

(g1) h0 ∈ C2(R+) where h0 satisfies

h0(v) = O(|v|p1), h
′
0(v) = O(|v|p2−1) as |v| → ∞

for some 1 < p1, p2 <
(

N+4
N−4

)
+

and there exists 1 < p3 <
(

N+4
N−4

)
+

such that

|h′(v + φ) − h′(v)| ≤
{

C|φ|p3−1 if p3 > 2

C(|φ| + |φ|p3−1) if p3 ≤ 2.
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(g2) The equation

(1.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�V + gσ(V ) = 0 in R
N ,

V > 0, V (0) = max
z∈Rn

V (z),

V → 0 at ∞

has a unique solution V (y) (by the results of [13], V is radial,

i.e., V = V (r) and V
′
< 0 for r = |y| �= 0) and V is nondegen-

erate. Namely the operator

(1.4) L := � + g
′
σ(V )

is invertible in the space H2
r (RN) :=

{
u = u(|y|) ∈ H2(RN)

}
.

Our main result is

Theorem 1.1. Assume that P0 ∈ Ω is a “nondegenerate peak” point

and m is in the metastable region, i.e., f ′(m) > 0. Then there exists

ε0 > 0 such that for ε < ε0 there is a spike solution vε of (1.2) where

vε −→ 0 in C1
loc(Ω̄\P ); vε has only one local (hence global) maximum

point Pε where Pε → P0 and vε(Pε) → V (0) > 0. Moreover,

ε−N

{∫
Ω

ε2

∣∣∣∣�vε − �V

(
x − Pε

ε

)∣∣∣∣
2

+

∫
Ω

∣∣∣∣vε − V

(
x − Pε

ε

)∣∣∣∣
2
}

→ 0

as ε → 0 where V (y) is the unique solution of

(1.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�V + g0(V ) = 0

V (0) = max
y∈RN

V (y), V > 0,

V (y) → 0 as |y| → ∞.

Remark : 1. A more detailed description of the convergence of vε

as ε → 0 is obtained in the proof of Theorem 1.1 in Section 7 below.

2. The techniques here certainly work for a large class of nonlinear-

ities, for example g(v) = −v + vr, g(v) = −v + vr − avs (1 < s <

r < N+2
N−2

, a ≥ 0), g(v) = v(v − a)(1 − v)(0 < a < 1
2
) (the bistable case
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in population dynamics) and the class of nonlinearities introduced in

Dancer [10].

3. We remark that for the following equation

(1.6)

⎧⎨
⎩ε2�u − u + ur = 0 in Ω,

∂u
∂ν

= 0 on ∂Ω

construction and characterization of interior spike solutions have been

studied in [32]. Equation (1.6) is the stationary solution of the Keller-

Segel model as well as the Gierer-Meinhardt system and the existence

of boundary spike layer solutions has been studied in [23], [24] and

[34]. Location and profile of the interior spike-layer solutions which are

minimizers among positive functions for the Dirichlet problem corre-

sponding to (1.6) have been studied in [25].

In [33], the first author gave both necessary and sufficient conditions

for the existence of single-peaked solutions of the corresponding Dirich-

let problem of (1.6). However, problem (1.6) and the corresponding

Dirichlet problem do not have the volume constraint and the nonlin-

earity is simpler than the one considered in this paper. The method

in [33] is variational and depends on the fact that equation (1.6) is

homogeneous. There is recent work giving sufficient conditions for the

existence of solutions with multiple interior spikes for related problems

by Gui and Wei [16] and Kowalczyk [19].

4. In Theorem 1.1, we constructed single-peaked solutions under the

condition that the spike point is a “nondegenerate peak” point. The

existence of a “nondegenerate peak ” point depends on the shape of

the domain. There are domains which do not have any “nondegenerate

peak” point, for example, cylindrical domains (see Figure 2). In a

forthcoming paper [37], we will prove the existence of K−interior peak

solutions for any positive integer K in any bounded domain. Therefore

the existence of interior peak solutions is independent of the shape of

the domain. The advantage of Theorem 1.1 is that it gives a detailed
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description of the asymptotic behavior of solutions, in particular of the

location of the peaks.

Figure 2. A Domain With No Nondegenerate Peak Point

5. The stability of spike solutions as constructed in Theorem 1.1

is unknown, though they are most likely to be unstable. In fact, we

believe that one should be able to analyze the spectrum of the solutions

by using their exact asymptotic behavior (the matrix G(P0) should play

an important role). We conjecture that the solutions constructed in this

paper should have an index of instability of n + 1. It is an interesting

question to characterize spike solutions with Morse index < n + 1.

Our proof uses the Liapunov-Schmidt construction which was intro-

duced in [12], [26], [27] and has been used in our earlier papers [35] and

[36]. However, for the construction of boundary spike solutions, we

just need an algebraic order estimate. Here for the interior peak case,

the nonlocal term
∫

Ω
h(v) is of algebraic order εN , but the term that

really governs the formation of interior spikes is exponentially small.

Therefore we have to separate the algebraic small order from the ex-

ponentially small order. We use the method of viscosity solutions as

introduced in [21] to estimate exponentially small terms.

The main points of the proof of Theorem 1.1 can be described as

follows:
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A)-Consider stationary solutions of the Cahn-Hilliard equation in

the whole of Rn. This is equivalent to the problem

∆V + gσ(V ) = 0, y ∈ Rn

(with u = m − τσ − V ).

When m is in the metastable region and σ > 0 is sufficiently small,

this equation has a unique ground state solution Vσ(y). In fact, Vσ

satisfies

(1.7)

⎧⎨
⎩�V + gσ(V ) = 0 in RN ,

V � 0, V (y) −→ 0 as |y| → +∞

For Vσ we establish the asymptotic behavior at infinity as well as the

continuous dependence on σ. This is done in Section 2.

B)-Spike solutions are expected to be perturbations of Vσ( ·−P
ε

) where

P ∈ Ω is suitably chosen. However, Vσ( ·−P
ε

) does not satisfy the Neu-

mann boundary condition on ∂Ω. In order to correct this we define a

new function PΩε,P
Vσ as the unique solution of

⎧⎨
⎩∆v − pσv + hσ(Vσ) = 0 in Ωε,P ,

∂u
∂ν

= 0 on ∂Ωε,P .

where Ωε,P := {y|εy + P ∈ Ω}.
This is done in Section 3.

C)- We choose σ such that

σ =
1

|Ω|
∫

Ω

h

(
τσ + PΩε,P

Vσ

(
x − P

ε

))
.

(This choice of σ will cancel terms of algebraic order in ε.)

We show that for ε sufficiently small there is a unique σ0 = O(εN)

which satisfies the above equation. We call PΩε,P
Vσ0 = wP,ε. We use

τσ0 + wP,ε as our approximate solution. This is done in Section 4.

D)-Let σ0 be the value determined in C). The idea now is to look

for a spike solution of the form τσ0 + wP,ε + φ and, provided P is
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properly chosen, φ is expected to be insignificantly small. The equation

determining φ is of the form

∆φ − pσ0φ + h
′
σ0

(wP,ε)φ + O(φ2) + Eε,P = 0 in Ωε,P

∂φ

∂ν
= 0 on ∂Ωε,P

where Eε,P is an error term. We will estimate this error term in Section

5 and show it to be exponentially small. It is then natural to try to solve

the equation for φ by a contraction type argument. The problem is that

the linearized operator ∆ − pσ0 + h′
σ0

(wP,ε) is not uniformly invertible

with respect to ε. Since ∆ − pσ0 + h′
σ0

(wP,ε) is merely a perturbation

of ∆ − pσ0 + h′(V ( ·−P
ε

)) which has an n-dimensional kernel (the span

of
∂V ( ·−P

ε
)

∂xi
, i = 1, ..., N), we now replace the above equation by

(1.8)⎧⎪⎪⎨
⎪⎪⎩

∆φ − pσ0φ + h
′
σ0

(wP,ε)φ + O(φ2) + Eε,P = vε(P ) ∈ CP,ε in Ωε,P ,

φ ∈ KP,ε

∂φ
∂ν

= 0 on ∂Ωε,P

where

KP,ε = span {∂wp,ε

∂Pj

, j = 1, ..., N}
and CP,ε = KP,ε are the approximate kernel and approximate cokernel

of ∆ − pσ0 + h′
σ0

(wP,ε), respectively.

E)-We solve (1.8) for φ modulo the approximate kernel. To this end,

we need a detailed analysis of the operator ∆ − pσ0 + h′
σ0

(wP,ε). This

together with the contraction argument is done in Section 6.

F)-In the last step, we study the vector field

P → Vε(P ) =: (

∫
Ωε,P

vε(P )
∂wP,ε

∂P1

, ...,

∫
Ωε,P

vε(P )
∂wP,ε

∂PN

).

The zeros of this vector field correspond to spike solutions of the Cahn-

Hilliard equation. To discuss the zeros of P → Vε(P ) we need very

good estimates for the difference PΩε,P
Vσ − Vσ. To this end, we let

P = P0 + ε(1
2
ad(P, ∂Ω) + z̃). Much of Section 3 is devoted to this

analysis. With a good estimate of Vε(P ), we discover that, in a small
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neighborhood of P ∈ Ω satisfying the geometric condition described in

Theorem 1.1, there is a point Pε such that Vε(Pε) = 0 and therefore the

proof of Theorem 1.1 is completed. This is done in Section 7.

This paper is organized as follows. In Section 2, we study equation

(1.7) in RN , then we analyze the projection of the solution Vσ of (1.7)

in Section 3. We choose σ in Section 4. In Section 5, we set up

the technical framework and establish some error estimates. Problem

(1.2), up to an approximate kernel and cokernel, is solved in Section

6 and thereby our problem is reduced to a finite dimensional one. In

Section 7, we apply a degree-theoretic argument to solve the reduced

problem (in which the nondegeneracy of the peak point P is essential)

and complete the proof of Theorem 1.1. Throughout the paper CN

denotes constants which depend on the dimension N only.

Acknowledgements. The first author wishes to thank Professor Wei-

Ming Ni for his constant encouragement. The research of the first au-

thor is supported by an Earmarked Grant from RGC of Hong Kong.

The research of the second author is supported by a grant under the

scheme “Human Capital and Mobility” of the European Union (Con-

tract No. ERBCHBICT930744). Finally we would like to thank the

referee for carefully reading the manuscript and many valuable sugges-

tions.

2. Equation in RN

In this section, we study a parametrized semilinear elliptic equation

in RN .

As above, we let

gσ(v) = f(m − τσ − v) − f(m) − σ = −pσ + hσ(v)

where

pσ = f ′(m − τσ),

hσ(v) = f(m − τσ − v) − f(m) − σ + f ′(m − τσ).
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Recall that for σ small we introduced τσ to be the unique zero of

gσ(τσ) = 0

which is near 0. Then τσ = τ(σ) is unique and continuously depends

on σ. Moreover,

τ(σ) = − σ

f ′(m)
+ O(σ2),

τ ′(σ) = − 1

f ′(m)
+ O(σ).

Recall that the following equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�V + gσ(V ) = 0,

V � 0, V (0) = max
y∈RN

V (y),

V (y) −→ 0 as |y| −→ ∞

has a unique solution Vσ and Vσ is radial.

Moreover, we have

Lemma 2.1.

(1) lim
|y|→∞

|y|N−1
2 e

√
pσ |y|Vσ(y) = cσ,

(2) lim
|y|→∞

V
′
σ(|y|)

Vσ(|y|) = −√
pσ

for some cσ > 0.

Note that pσ = p0 + O(σ). Hence it is not difficult to see that there

are R > 0, c > 0, C > 0 independent of σ > 0 such that

|Vσ|, |V ′
σ| � Ce−c|y| for |y| � R.

Let ρ > 0 be very small, σ + ρ > 0. Consider the function wρ =
Vσ+ρ − Vσ

ρ
. Then wρ satisfies

�wρ +
1

ρ
[gσ+ρ(Vσ+ρ) − gσ(Vσ)] = 0.
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Hence by the mean value theorem, we have

1

ρ
[gσ+ρ(Vσ+ρ)− gσ(Vσ)] =

1

ρ
[f(m− τσ+ρ − Vσ+ρ)− f(m− τσ − Vσ)− ρ]

= f
′
(m − τσ+tρ − Vσ+tρ)

(
−wρ − 1

ρ
(τσ+ρ − τσ)

)
− 1)

where 0 � t � 1.

So

�wρ + f
′
(m − τσ+tρ − Vσ+tρ)

(
−wρ − 1

ρ
(τσ+ρ − τσ)

)
− 1) = 0.

Note that wρ −→ 0 as |y| → ∞ (ρ fixed) and |wρ| � CR for |y| � R

where CR is independent of ρ and depends on R only.

Since |Vσ+tρ| � Ce−c|y| for somce c > 0 when |y| � R0 (R0 large) we

have f ′(m − τσ+ρ − Vσ+tρ) � 1
2
f ′(m) for |y| ≥ R0, provided that σ and

ρ are small enough.

So max
y∈RN

|wρ| � C, where C is independent of ρ.

Letting ρ → 0, we have |∂Vσ

∂σ
| � C and

�(
∂Vσ

∂σ
) + f ′(m − τσ − Vσ)

(
−∂Vσ

∂σ
− 1

f ′(m)

)
− 1 = 0.

We have proved

Lemma 2.2. For σ sufficiently small,
∂Vσ

∂σ
exists and is continuous

with respect to σ. It satisfies

�(
∂Vσ

∂σ
) + f ′(m − τσ − Vσ)

(
−∂Vσ

∂σ
− 1

f ′(m)

)
− 1 = 0.

3. Projection of Vσ

In this section, we study properties of the function Vσ introduced

in Section 2. In particular, we introduce a “projection” of Vσ in

H1
N(Ω), the linear subspace of H1(Ω) of functions satisfying the Neu-

mann boundary condition and prove some estimates.
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Let U be any bounded smooth convex domain. (The condition of

convexity will be removed below). We define PUVσ as the unique solu-

tion of

(3.1)

⎧⎨
⎩�v − pσv + hσ(Vσ) = 0 in U,

∂v
∂ν

= 0 on ∂U

where

pσ = −f ′(m − τσ),

hσ(v) = f(m − τσ − v) − f(m) − σ + f ′(m − τσ)v.

Set

Ωε,P : = {y|εy + P ∈ Ω},

ϕε,P (x) = Vσ(
|x − P |

ε
) − PΩε,P

Vσ(y), εy + P = x.

Then ϕε,P (x) satisfies

(3.2)

⎧⎨
⎩ε2�v − pσv = 0 in Ω,

∂v
∂ν

= ∂
∂ν

Vσ( |x−P |
ε

) on ∂Ω.

By Lemma 2.1 it is immediately seen that on ∂Ω

(3.3)
∂

∂ν
Vσ(

|x − P |
ε

) =
1

ε
V ′

σ(
|x − P |

ε
)
< x − P, ν >

|x − P |

= −1

ε

(
|x − P |−(N−1)/2 · ε+ N−1

2 e−
√

pσ |x−P |
ε

√
pσ

(
1 + O(ε)

))< x − P, ν >

|x − P |
= −ε

N−3
2 e−

√
pσ |x−P |

ε
√

pσ

(
1 + O(ε)

)< x − P, ν >

|x − P |N+1
2

.

Assume first that Ω is convex with respect to P . Namely, there is a

constant c0 > 0 such that

〈x − P, νx〉 ≥ c0

for all x ∈ ∂Ω, where νx is the unit outer normal at x ∈ ∂Ω.
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To analyze PΩε,P
Vσ, we introduce another linear problem. Let PD

Ωε,P
Vσ

be the unique solution of⎧⎨
⎩ε2�v − pσv + hσ(Vσ) = 0 in Ω,

v = Vσ( |x−P |
ε

) on ∂Ω.

Set

ϕD
ε,P = Vσ − PD

Ωε,P Vσ, ψε,P (x) = −ε log ϕD
ε,P (x).

Note that ϕε,P , ϕD
ε,P and ψε,P depend on σ. Then ψε,P satisfies⎧⎨
⎩ε�v − |�v|2 + pσ = 0 in Ω,

v = −ε log(Vσ( |x−P |
ε

)) on ∂Ω.

Note that for x ∈ ∂Ω

ψε,P (x) = −ε log

(
(
|x − P |

ε
)−

n−1
2 e−

√
pσ |x−P |

ε (1 + O(ε))

)

=
√

pσ|x − P | + n − 1

2
ε log(

|x − P |
ε

) + O(ε2)

=
√

p|x − P | + n − 1

2
ε log(

|x − P |
ε

) + O(σ) + O(ε2)

since pσ = p + O(σ).

By the results of Section 4 in [25], we have

Lemma 3.1. (1)
∂ψε,P

∂ν
= −(

√
p

σ
+ O(ε))

< x − P, ν >

|x − P | ,

(2) ψε,P (x) −→ ψ0(x) = inf
z∈∂Ω

√
pσ(|z − x| + |z − P |) as ε → 0

uniformly in Ω̄. In particular ψ0(P ) = 2
√

p
σ
d(P, ∂Ω).

Note that ψ0 is a viscosity solution of the Hamilton-Jacobi equation

|∇u| =
√

pσ in Ω (see [21]).

Let us now compare ϕε,P (x) and ϕD
ε,P (x). In fact, we have

Lemma 3.2. Assume that Ω is convex with respect to P . Then there

exist η0, ε0 > 0 such that for ε � ε0, we have

−(1 + η0ε)ϕ
D
ε,P � ϕε,P � −(1 − η0ε)ϕ

D
ε,P .
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Proof. On ∂Ω, we have

∂ϕD
ε,P

∂ν
= e−

ψε,P (x)

ε (−1

ε
)
∂ψε,P (x)

∂ν

= −1

ε
(Vσ)

∂ψε,P (x)

∂ν

=
1

ε
V (

√
pσ + O(ε))

< x − P, ν >

|x − P |
=

1

ε

∂Vσ

∂ν
(1 + O(ε))

= −(1 + O(ε))
∂ϕε,P

∂ν
.

Note that since Ω is convex, we have
∂ϕε,P

∂ν
< 0, hence by comparison

principles

−(1 + η0ε)ϕ
D
ε,P � ϕε,P � −(1 − η0ε)ϕ

D
ε,P .

Lemma 3.2 is thus proved. �

Let

Vε,P (y) =
1

ϕε,P (P )
· ϕε,P (x).

Then Vε,P (0) = 1, Vε,P > 0 and by Lemma 3.2 and Lemma 4.4 of

[25], we have

Lemma 3.3. For every sequence εk → 0 and σ fixed, there is a subse-

quence εk	 → 0 such that Vεk�,P → Ṽ uniformly on every compact set

of RN , where Ṽ is a positive solution of⎧⎨
⎩�u − pσu = 0 in RN ,

u > 0 in RN and u(0) = 1.

Moreover for any c1 > 0, sup
z∈Ωεk�,P

e−(
√

pσ+c1)|z|∣∣Vεk�,P (z) − Ṽ
∣∣ → 0 as

εk	 → 0.

We have the following key computations.
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Lemma 3.4. Suppose Pε = P0 + ε(b + z̃) with |z̃| = O(εα), 0 < α <

α0, 2b = ad(P0, ∂Ω) and σ = O(εN) as ε → 0. Then

Lj(ε, z̃) :=

∫
Ωε,Pε

[
hσ

(
PΩε,Pε

Vσ

) − hσ

(
Vσ − τσ

)]∂Vσ

∂yj

= Lj(z̃)ϕε,Pε(Pε) + O
(
ϕε,Pε(Pε)ε

min(1,2α,α0)
)

where L(z̃) := (L1(z̃), ..., LN(z̃)) is a matrix and we have

Lj(z̃) = γ

∫
∂Ω

e<z−P0,b>〈z − P0, z̃〉
(
zj − P0,j

)
dµP0(z)∫

∂Ω
e<z−P0,b>dµP0(z)

where γ �= 0 is a constant depending on N and d(P0, ∂Ω) only.

Proof:

Note that ϕD
ε,P (x) satisfies

(3.4)

⎧⎨
⎩

ε2∆v − pσv = 0 in Ω,

v(x) = Vσ

(
|x−P |

ε

)
on ∂Ω.

Recall that

ψε,P (x) = −ε log(ϕD
ε,P (x)).

and that ψε,P satisfies⎧⎨
⎩ε∆v − |∇v|2 + pσ = 0 in Ω,

v = −ε log(Vσ) on ∂Ω.

If σ = O(εN) we have pσ = p0 + O(εN) and τσ = O(εN) as ε → 0.

Hence |ψε,P − ψ̃ε,P | ≤ CεN where ψ̃ε,P is the unique solution of⎧⎨
⎩ε∆v − |∇v|2 + p0 = 0 in Ω,

v = −ε log V on ∂Ω

and V is the unique solution of (1.3).

Let Gε(x, y) be the Green’s function of −ε2∆+pσ on W 1,2
0 (Ω). Then

we have by the standard representation formula,
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Lemma 3.5.

(3.5) ϕD
ε,P (x) =

∫
∂Ω

Vσ(
z − P

ε
)
∂Gε(z, x)

∂ν
dz.

By Lemma 3.5 and the estimates in [33], Section 3 we calculate

ϕD
ε,P (x) =

CN + O(ε)

εN

×
∫

∂Ω

{
e−

√
pσ

|z−P |+|z−x|
ε |z − P |−N−1

2 |z − x|−N−1
2

〈z − x, ν〉
|z − x| dz

}
(3.6)

as ε → 0.

We immediately have

(3.7)

ϕD
ε,P (P ) =

CN + O(ε)

εN

∫
∂Ω

{
e−

√
pσ

2|z−P |
ε |z − P |−(N−1) 〈z − P, ν〉

|z − P |
}

dz.

Let εy + P = x and |y| ≤ K, then

|z − x| = |z − P − εy| = ε|y − z − P

ε
|

= |z − P | − 〈y,
z − P

|z − P |〉ε + O(ε2).(3.8)

By Lemma 3.2

Lj(ε, z̃) : =

∫
Ωε,Pε

[
hσ

(
PΩε,Pε

Vσ

) − hσ

(
Vσ

)]∂Vσ

∂yj

= −
∫

Ωε,Pε

[
h

′
σ(Vσ)ϕε,Pε

]
∂Vσ

∂yj

+ O(εϕε,P (P ))

=

∫
Ωε,Pε

[
h

′
σ(Vσ)ϕD

ε,Pε

]
∂Vσ

∂yj

+ O(εϕD
ε,P (P )).

Let P = Pε = P0 + ε(b + z̃). Then

1

ϕD
ε,Pε

(Pε)
Lj(ε, z̃) =

=

∫
RN

h
′
σ(Vσ)V

′
σ

yj

|y|

⎧⎨
⎩

∫
∂Ω

{
e−

2
√

pσ |z−Pε|
ε e

√
pσ〈y, z−Pε

|z−Pε| 〉|z − Pε|−(N−1) 〈z−Pε,ν〉
|z−Pε| dz

}
∫

∂Ω

{
e−

2
√

pσ |z−Pε|
ε |z − Pε|−(N−1) 〈z−Pε,ν〉

|z−Pε| dz
}

⎫⎬
⎭

×(1 + O(ε))
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=

∫
∂Ω

{
e−

2
√

pσ |z−Pε|
ε |z − P0|−(N−1) 〈z−P0,ν〉

|z−P0|∫
∂Ω

{
e−

2
√

pσ |z−Pε|
ε |z − P0|−(N−1) 〈z−P0,ν〉

|z−P0| dz
}

×
∫

RN

h
′
σ(Vσ)V

′
σ

yj

|y|e
√

pσ〈y, z−Pε
|z−Pε| 〉dy

}
dz(1 + O(ε))

=

∫
∂Ω

{
e−

2
√

pσ |z−Pε|
ε |z − P0|−(N−1) 〈z−P0,ν〉

|z−P0|∫
∂Ω

{
e−

2
√

pσ |z−Pε|
ε |z − P0|−(N−1) 〈z−P0,ν〉

|z−P0| dz
} zj − P0,j

|z − P0|

×
∫

RN

h
′
σ(Vσ)V

′
σ

1

|y|e
y1dy

}
dz(CN + O(ε))

=

∫
∂Ω

⎧⎨
⎩

e−
2
√

pσ |z−Pε|
ε |z − P0|−(N−1) 〈z−P0,ν〉

|z−P0|∫
∂Ω

{
e−2

√
pσ |z−Pε|

ε |z − P0|−(N−1) 〈z−P0,ν〉
|z−P0| dz

} zj − P0,j

|z − P0|

⎫⎬
⎭ dz

×(CN + O(ε)) as ε → 0.

Note that

e−2
√

pσ
|z−Pε|

ε = e−2
√

pσ
|z−P0|

ε e
2
√

pσ〈b, z−P0
|z−P0| 〉(1+2〈z̃, z − P0

|z − P0|〉+O(εmin(1,2α))).

Hence
1

ϕD
ε,Pε

(Pε)
Lj(ε, z̃)

=

∫
∂Ω

e−
2
√

pσ |z−P0|
ε e

√
pσ〈a,z−P0〉|z − P0|−(N−1) 〈z−P0,ν〉

|z−P0|∫
∂Ω

{
e−

2
√

pσ |z−P0|
ε e

√
pσ〈a,z−P0〉|z − P0|−(N−1) 〈z−P0,ν〉

|z−P0| dz
} zj − P0,j

|z − P0| dz

×(CN + O(ε))

+

∫
∂Ω

e−
2
√

pσ |z−P0|
ε e

√
pσ〈a,z−P0〉|z − P0|−(N−1) 〈z−P0,ν〉

|z−P0|∫
∂Ω

{
e−

2
√

pσ |z−P0|
ε e

√
pσ〈a,z−P0〉|z − P0|−(N−1) 〈z−P0,ν〉

|z−P0| dz
}

×〈z̃, z − P0〉zj − P0,j

|z − P0| dz (2CN + O(ε))

=

∫
∂Ω

e−
2
√

pσ |z−P0|
ε e

√
pσ〈a,z−P0〉|z − P0|−(N−1) 〈z−P0,ν〉

|z−P0|∫
∂Ω

{
e−

2
√

pσ |z−P0|
ε e

√
pσ〈a,z−P0〉|z − P0|−(N−1) 〈z−P0,ν〉

|z−P0| dz
}

×〈z̃, z − P0〉(zj − P0,j)dz (CN + O(ε)) + O(εmin(1,2α,α0))
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by the assumptions. (Note that we have included the factors 2 and

powers of |z − P0| into the constant CN .)

Hence
1

ϕε,Pε(Pε)
Lj(ε, z̃)

= γ

∫
∂Ω

e<a,z−P0>〈z̃, z − P0〉
(
zj − P0,j

)
dµP0(z)∫

∂Ω
e<a,z−P0>dµP0(z)

+ O(εmin(1,2α,α0)).

Lemma 3.4 is proved. �

Finally, we discuss the case when Ω is not convex with respect to P .

To this end, we introduce another function. Let Uε be the solution

of the following problem⎧⎨
⎩ε2∆Uε − pσUε = 0 in Ω,

Uε = 1 on ∂Ω.

Set

Ψε = −ε log(Uε).

Then by Theorem 1 of [11], we have

Ψε(x) =
√

pσd(x, ∂Ω) + O(ε),
∂Ψε

∂ν
= −√

pσ + O(ε)

and

|Uε(x)| ≤ Ce−
√

pσ
d(x,∂Ω)

ε .

Moreover, for any c0 > 0 we have

(3.9)
Uε(εy + P )

Uε(P )
≤ Ce(

√
pσ+c0)|y|.

In this case we have

Lemma 3.6. There exist η0, α0 > 0, ε0 > 0 such that for ε ≤ ε0, we

have

−(1+η0ε)ϕ
D
ε,P−Ce−

√
pσ
ε

(1+α0)d(P,∂Ω)Uε < ϕε,P < −(1−η0ε)ϕ
D
ε,P +Ce−

√
pσ
ε

(1+α0)d(P,∂Ω)Uε
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Proof: For any bounded smooth domain Ω we can choose a constant

R = (1 + 2α0)d(P, ∂Ω) for some α0 > 0 such that Ω1 := BR(P ) ∩ Ω is

strictly convex with respect to P , i.e.

< x − P, νx >≥ ν0 > 0, x ∈ ∂Ω1.

Then on ∂Ω1 ∩ ∂Ω = Γ1, we have

∂ϕε,P

∂ν
≤ −(

√
pσ + O(ε))

∂ϕD
ε,P

∂ν

On ∂Ω\Γ1, we have

|∂ϕD
ε,P

∂ν
| ≤ Ce−(1+2α0)

√
pσ
ε

d(P,∂Ω)

∂ϕε,P

∂ν
≤ Ce−(1+2α0)

√
pσ
ε

d(P,∂Ω) ≤ Ce−(1+α0)
√

pσ
ε

d(P,∂Ω) ∂Uε

∂ν

for some α0 > 0. By comparison principles, we get the inequality.

Lemma 3.6 is thus proved. �

Since for ε small enough e−
√

pσ
ε

(1+α0)d(P,∂Ω)Uε ≤ e−
pσ
ε

(2+α0)d(P,∂Ω) which

is smaller than ϕD
ε,P this term can be ignored. Hence Lemma 3.2 even

holds for domains which are not convex with respect to a point P ∈ Ω.

4. Choosing σ

In this section we choose σ. Let PΩε,zVσ be defined as in Section 3

and let P0

The choice of σ is such that the algebraically and the exponentially

small terms are separated in the equation. To explain how we choose

σ, we plug the fucntion v = τσ + w̃ into equation (1.2). We have after

rescaling

∆w̃ − pσw̃ + hσ(w̃) − 1

|Ω|
∫

Ω

[σ − h(τσ + w̃) = 0.

In order to make the nonlocal term vanish, we let∫
Ω

[σ − h(τσ + w̃)] ∼ 0.



CAHN-HILLIARD EQUATION 23

Since v ∼ PΩε,P
Vσ, this suggests that σ should satisfy

∫
Ω

[σ − h(τσ + PΩε,P
Vσ)] = 0.

We now solve the following equation

σ − 1

|Ω|
∫

Ω

h(τσ + PΩε,P
Vσ(

x − z

ε
)) = 0

where |P − P0| ≤ Cε.

Note that

1

|Ω|
∫

Ω

h(τσ + PΩε,P
Vσ(

x − P

ε
))

=
εN

|Ω|
∫

Ωε,P

h(τσ + PΩε,P
Vσ).

Hence

∂

∂σ

εN

|Ω|
∫

Ωε,P

h(τσ + PΩε,P
Vσ)

=
εN

|Ω|
∫

Ωε,P

h
′
(τσ + PΩε,P

Vσ)
[∂τσ

∂σ
+

∂PΩε,P
Vσ

∂σ

]

� CεN

if ε and σ are small enough by the definitions of τσ and PΩε,P
Vσ amd

by Lemma 2.2.

Hence by the Implicit Function Theorem, we have

Lemma 4.1. For ε < ε0, σ < σ1, the following equation has a unique

solution σ0:

σ =
1

|Ω|
∫

Ω

h(τσ + PΩε,P
Vσ(

x − z

ε
)).

Note that

σ0 = O(εN).
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5. Technical Framework

In this section, we set up the technical framework to solve equation

(1.2). Without loss of generality, we assume that P0 = 0 ∈ Ω is a

nondegenerate peak point, i.e.

(1) Λ0 = {dµ0(z)}.
(2) ∃a ∈ RN such that∫

∂Ω

e<a,z>zdµ0(z) = 0

and ∫
∂Ω

{
e−

|z|
ε e<a,z>∫

∂Ω
e−

|z|
ε dz

}
zdz = O(εα0)

for some α0 > 0.

(3) The matrix G(0) :=
(∫

∂Ω
e<a,z>(zizj)dµ0(z)

)
is nondegenerate.

Let z = ε(a
2
d(0, ∂Ω)+ z̃) where |z̃| < εα with 0 < α < 1 to be chosen

later.

We assume that σ = σ0 where σ0 is defined by Lemma 4.1.

Define Hε : H2
N(Ωε) → L2(Ωε) by

(5.1) Hε(v) := ∆v − p0v + h(v) −
∫

Ωε

h(v)

where

H2
N(Ω) :=

{
v ∈ H2(Ωε) :

∂v

∂ν
= 0 on ∂Ωε

}
.

We are looking for a nontrivial zero of (5.1). It is easy to see that

Hε is a Fréchet differentiable map with its Fréchet derivative given by

H
′
ε(v)φ = �φ − p0φ + h′(v)φ − εN

|Ω|
∫

Ωε

h′(v)φ

Set

wz,ε(y) := PΩε,zVσ0 .

We are interested in finding the zeros of Hε of the special form

wz,ε + τσ0 + φ



CAHN-HILLIARD EQUATION 25

for sufficiently small ε > 0 and sufficiently small φ ∈ H2
N(Ω). We shall

see that solutions of this particular form correspond to single-peaked

solutions of (1.2) with their peak concentrated near 0.

Equation (5.1) can also be written as

H1
ε (w̃) := �w̃ − pσw̃ + hσ(w̃) +

1

|Ω|
∫

Ω

[σ − h(τσ + w̃)] = 0.

where

v = τσ + w̃.

Set

w̃ = PΩε,zVσ + φε,z.

Then we have

H1
ε (w̃) := �φε,z − pσφε,z + hσ(PΩε,zVσ + φε,z) − hσ(Vσ)

+
1

|Ω|
∫

Ω

[σ − h(τσ + PΩε,zVσ + φε,z)]

= �φε,z − pσφε,z + h′
σ(PΩε,zVσ)φε,z

+hσ(PΩε,zVσ + φε,z) − hσ(PΩε,zVσ) − h′
σ(PΩε,zVσ)φε,z

+hσ(PΩε,zVσ) − hσ(Vσ)

+
1

|Ω|
∫

Ω

[h(τσ + PΩε,zVσ) − h(τσ + PΩε,zVσ + φε,z)]

= F
′
ε (wz,ε)φε,z

+N1
ε,z(φε,z)

+Mε,z

+N2
ε,z(φε,z)

where

F
′
ε (wz,ε)φε,z := �φε,z − pσφε,z + h′

σ(PΩε,zVσ)φε,z,

N1
ε,z(φε,z) := hσ(PΩε,zVσ + φε,z) − hσ(PΩε,zVσ) − h′

σ(PΩε,zVσ)φε,z,

N2
ε,z(φε,z) =

1

|Ω|
∫

Ω

[h(τσ + PΩε,zVσ) − h(τσ + PΩε,zVσ + φε,z)],

Mε,z = hσ(PΩε,zVσ) − hσ(Vσ).

It is easy to see that
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Lemma 5.1. For ε sufficiently small

‖N1
ε,z(φε,z)‖L2(Ωε,z) � c‖φ‖2

H2(Ωε,z),

‖N2
ε,z(φε,z)‖L2(Ωε,z) � cε

N
2 ‖φ‖H2(Ωε,z),

‖N1
ε,z(φ1) − N1

ε,z(φ2)‖L2(Ωε,z) � c
(‖φ1‖H2(Ωε,z) + ‖φ2‖H2(Ωε,z)

)
‖φ1 − φ2‖H2(Ωε,z),

‖N2
ε,z(φ1) − N2

ε,z(φ2)‖L2(Ωε,z
� cε

N
2 ‖φ1 − φ2‖H2(Ωε,z).

Moreover, we have the following error estimates.

Lemma 5.2.

‖Mε,z‖L2(Ωε,z) � cϕ
1+µ

2
ε,z (z) for some µ > 0.

Proof. In fact∣∣hσ(PΩε,zVσ) − hσ(Vσ)
∣∣2 � c

(
h′

σ(Vσ)
∣∣PΩε,zVσ − (Vσ − τσ)

∣∣)2

� c
[
V 2

σ · |Vε,z|2
] · ϕ2

ε,z(z)

≤ cV 2+µ
σ · V 2

ε,z · ϕ2−µ
ε,z (z)

≤ ce−δ|y|ϕ2−µ
ε,z (z)

for some δ > 0.

Hence

‖Mε,z‖2
L2(Ωε,z) � cϕ1+µ

ε,z (z)

for some µ > 0. �

6. Reduction to Finite Dimensions: Fredholm Inverses

In this section, we show that the linear operator F ′
ε(wz,ε) = ∆ −

pσ + hσ(PΩε,P
Vσ) is invertible if the domain and the range are suitably

restricted.

Set

(6.1) Kz,ε = span
{∂wz,ε

∂zi

∣∣i = 1, · · · , N
}
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in H2
N(Ωε) and

Cz,ε = span
{∂wz,ε

∂zi

∣∣i = 1, · · · , N
} ∩ L2(Ωε).

Kz,ε is called the approximate kernel, while Cz,ε is called the approx-

imate co-kernel.

Note that a function φ ∈ co-kernel of F ′
ε(wz,ε) if and only if for all

ψ ∈ H2
N(Ωε) we have

∫
Ωε

φF ′
ε(wz,ε)ψ = 0.

Integrating by parts, we have∫
∂Ω

ψ
∂φ

∂ν
+ ψF

′
ε (wz,ε)φ = 0, ∀ψ ∈ H2

N(Ωε).

Hence φ ∈ co-kernel of F ′
ε(wz,ε) if and only if⎧⎨

⎩F
′
ε (wz,ε)φ = 0 in Ωε,

∂φ
∂ν

= 0 on ∂Ωε.

Therefore co-kernel of F ′
ε(wz,ε) = kernel of F ′

ε(wz,ε). Observe that

span{∂V

∂yi

|i = 1, · · · , N} is the kernel of L, where L is a linear operator

defined as

Lφ := ∆φ − p0φ + h′(V )φ, φ ∈ H2(RN).

Our main result in this section can be stated as follows.

Proposition 6.1. There exist positive constants ε1, µ such that for all

ε ∈ (0, ε1)

(6.4) ‖Lz,εφ‖L2(Ωε) � µ‖φ‖H2(Ωε)

for all |z| < εα and for all φ ∈ K⊥
z,ε where

(6.5) Lz,ε = πz,ε ◦ F ′
ε(wz.ε)

and πz,ε is the L2-orthogonal projection from L2(Ωε) to C⊥
z,ε.

The next proposition gives the surjectivity of Lz,ε.
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Proposition 6.2. There exists a positive constant ε2 such that for all

ε ∈ (0, ε2) and |z| < εα, α > 1 the map

Lz,ε = πz,ε ◦ F ′
ε(wz,ε) : K⊥

z,ε −→ C⊥
z,ε

is surjective.

Combining Propositions 6.1 and 6.2 gives us the invertibility of Lz,ε.

Proposition 6.3.

Lz,ε : K⊥
z,ε −→ C⊥

z,ε

is uniformly invertible, namely,

L−1
z,ε : C⊥

z,ε −→ K⊥
z,ε

exists bounded.

We now begin to prove Proposition 6.1.

Proof of Proposition 6.1: We follow the strategy used in [35].

Suppose (6.4) is false. Then there exist sequences {εk}, {zk} and

{φk}, with |zk| � εα
k and εk → 0 as k → ∞ such that

φk ∈ K⊥
zk,εk

and

(6.10) ‖Lzk,εk
(φk)‖L2(Ωεk

) → 0, ‖φk‖H2(Ωεk
) = 1.

We denote for i = 1, · · · , N

(6.11) ek,i =

∂wzk,εk

∂zi

‖∂wεk,εk

∂zi
‖
.

Note that as εk → 0

(6.12)
∥∥∂wzk,εk

∂zi

− ∂V

∂yi

∥∥
H2(Ωε)

→ 0.

Hence ∫
Ωεk

ek,iek,j −→ c

∫
RN

∂V

∂yi

∂V

∂yj

= 0 for i �= j.
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Therefore after applying the Gram-Schmidt process to {ek,i|i = 1, · · · , N}
we obtain a family of orthonormal functions {e∗k,i|i = 1, · · · , N} with

e∗k,i = ek,i + δk,i, i = 1, · · · , N

where δk,i −→ 0 in L2(Ωεk
) as k → ∞ for each i = 1, · · · , N .

Hence

(6.13) Lz,εk
φk = F ′

εk
(wzk,εk

)φk −
N−1∑
i=1

(∫
Ωεk

[F ′
εk

(wzk,εk
)φk]ek,i

)
ek,i + Ek

where Ek is defined by (6.13) and it is easy to see that ‖Ek‖L2(Ωεk
) → 0

as k → 0.

Note that

(6.14)

‖Lz,εk
(φk)‖2

L2(Ωεk
) = ‖F ′

εk
(wzk,εk

)φk‖2
L2(Ωεk

)

−
n∑

i=1

(

∫
Ωεk

[F ′
εk

(wzk,εk
)φk]ek,i)

2 + o(1)

as k → ∞.

Hence from (6.14), we have

(6.15) ‖F ′
εk

(wzk,εk
)φk‖2

L2(Ωεk
) −

N∑
i=1

(

∫
Ωεk

[F ′
εk

(wzk,εk
)φk]ek,i)

2 → 0

as k → ∞.

Let

χ(x) =

⎧⎨
⎩1, if |x| < d(0,∂Ω)

2
,

0, if |x| � 2d(0,∂Ω)
3

and

φ̃k = φkχ(εky).

Then φ̃k is well-defined in Rn and

‖φ̃k‖H2(Rn) � C‖φk‖H2(Ωεk
) � C.

Because of the decay of φk uniformly in k we have φ̃k → φ0 weakly

in H2(Rn) for some φ0 ∈ H2(Rn).

We now claim that φ0 ≡ 0.
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In fact, since ∫
φkek,i = 0 i = 1, · · · , N

we have∫
RN

φ̃kek,i =

∫
Ωεk

φk(1 − χ(εky))ek,i

� ‖φk‖L2(Ωεk
)‖(1 − χ(εky))ek,i‖L2(Ωεk

) → 0.

Since ek,i has exponential decay outside Bc(0, δ) for any δ > 0 it

follows that

(6.16)

∫
RN

φ0
∂V

∂yi

= 0, i = 1, · · · , N.

On the other hand, we now show that

(6.17) F ′
0(V )φ0 ∈ C0 = span {∂V

∂yi

|i = 1, · · · , N}.

In fact, it is enough to show that

(6.18)

∫
RN

F ′
0(V )φ0g = 0, for all g ⊥ C0.

To show (6.18), we note that by (6.15)

F ′
εk

(wzk,εk
)φk = ψ1

k + ψ2
k

where ψ1
k ∈ Czε,εk

, ψ2
k ⊥ Czk,εk

and

‖ψ2
k‖L2(Ωεk

) −→ 0.

Hence∫
RN

(
F ′

εk
(wzk,εk

)
)
φ̃k =

∫
RN

F ′
εk

(wzk,εk
)φkg −

∫
RN

F ′
εk

(wzk,εk
)(1 − χ(εy))φkg

=

∫
RN

ψ1
kg +

∫
RN

ψ2
kg −

∫
RN

F ′
εk

(wzk,εk
)(1 − χ(εy))φkg

→ 0

since | ∫
RN F ′

εk
(wzk,εk

)(1−χ(εy))φkg| � C

∫
{|y|�d(0,∂Ω)

εk
}
g2 → 0,

∣∣ ∫
Rn ψ2

kg
∣∣ �

C‖ψ2
k‖L2(Ωεk

)‖g‖L2(Ωεk
) and ψ1

k −→ ψ0 in C0.
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Therefore (6.18) is proved and (6.17) is true.

But F ′
0(V )φ0 ⊥ C0 since∫ (

F ′
0(V )φ0)

∂V

∂yi

=

∫
φ0F

′
0(V )

∂V

∂yi

= 0, i = 1, · · · , N.

Hence F ′
0(V )φ0 = 0. So φ0 ∈ ker(L) and φ0 ⊥ span { ∂V

∂yi

∣∣i =

1, · · · , N}.
By (6.16), this is impossible unless φ0 ≡ 0.

Therefore we obtain

(6.19) φ0 ≡ 0.

Now we prove that ‖φk‖H2(Ωεk
) −→ 0 which will give the desired

contradiction. In fact

(6.20) F ′
εk

(wzk,εk
)φk = F ′

εk
(wzk,εk

)φ̃k + F ′
εk

(wzk,εk
)[1 − χ(εku)]φk

and

(6.21)

∫
F ′

εk
(wzk,εk

)φk
∂wzk,εk

∂zi

=

∫
F ′

εk
(wzk,εk

)φ̃k
∂wzk,εk

∂zi

+

∫
F ′

εk
(wzk,εk

)(1 − χεky))φk
∂wzk,εk

∂zi

−→ 0

as k → ∞.

By (6.16) we then have

‖F ′
εk

(wzk,εk
)φk‖L2(Ωεk

) −→ 0.

Note that

F ′
εk

(wzk,εk
)φk = �φk − pσφk + h

′
σ(wzk,εk

)φk

= �φk − pσφk + h
′
σ(wzk,εk

)φ̃k + h
′
σ(wzk,εk

)(1 − χ(εky))φk

and
‖h′(wzk,εk

)φ̃k‖L2(Ωεk
) → 0

‖h′(wzk,εk
)(1 − χ(εky))φk‖L2(Ωεk

) → 0.

So

‖�φk − pσφk‖L2(Ωεk
) → 0.
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On the other hand, we have

‖φk‖H2(Ωεk
) � C‖�φk − pσφk‖L2(Ωεk

)

(see [35], Appendix A).

Hence ‖�φk − pσφk‖L2(Ωεk
) → 0 as k −→ ∞, a contradiction to our

hypothesis. Thus Proposition 6.1 is proved. �

Before proving Proposition 6.2, we now introduce a notion of “dis-

tance” between two closed subspaces E,F of a Hilbert space H :=

L2(Ωε). Following [17], we set

→
d(E,F ) = sup{d((x, F )|x ∈ E, ‖x‖H = 1}

It is easy to see that
→
d is non-symmetric,

→
d(E,F ) � 1 and that

(6.24) d(x, F ) = 1 if and only if x ⊥ F.

Moreover, it is not hard to show that
→
d(E,F ) =

→
d(F⊥, E⊥).

The following lemma will be needed in the proof of Proposition 6.2.

Lemma 6.5. ([[17]; Lemma 1.3]) If
→
d(E,F ) < 1, then πF |E : E → F

is injective and πE|F : F → E has a bounded right inverse, where

πE(πF , resp.) is the orthogonal projection from H to E(F, resp.). In

particular, πE|F : F → E is surjective.

We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2:

Let Ckz,ε = co-kernel of F ′
ε(wz,ε). We first claim that

(6.25) d(Ckz,ε, Cz,ε) < 1

for all ε > 0 sufficiently small.

In fact, suppose (6.25) is not true. Then there exist εk → 0 and

φk ∈ Ckzk,εk
such that

(6.26) F ′
εk

(wzk,εk
)φk = 0 in Ωεk

,
∂φk

∂ν
= 0 on ∂Ωεk

,
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(6.27) ‖φk‖L2(Ωεk
) = 1,

(6.28)

∫
φk

∂(wzk,εk
)

∂zi

= 0, i = 1, · · · , N.

By (6.26) and (6.27), we have

‖φk‖H2(Ωεk
) � C.

Thus φk → φ0 weakly in H2(Rn) and φ0 satisfies⎧⎨
⎩F ′

0(V )φ0 = 0, ‖φ0‖L2(RN ) = 1,∫
φ0

∂V
∂yi

= 0, i = 1, · · · , N.

This is impossible.

Hence (6.25) is true.

Now by the fact that d(E,F ) = d(F⊥, E⊥), we have

d(C
⊥
z,ε, Ck

⊥
z,ε) < 1

where C
⊥
z,ε(Ck

⊥
z,ε, resp.)is the orthogonal complement of Cz,ε(Ckz,ε,

resp) in L2(Ωε).

Thus the map

(6.32) π
C

⊥
z,ε

∣∣
Ck

⊥
z,ε

: Ck
⊥
z,ε → C

⊥
z,ε

is surjective, by Lemma 6.5.

Since Ck
⊥
z,ε is the range of F ′

ε(wz,ε), it suffices to show that the map

in (6.32) when restricted to Ck⊥
z,ε, which is πz,ε is onto C⊥

z,ε. However,

this follows easily from the expression

π
C

⊥
z,ε

(φ) = φ − πCz,εφ. �

Finally in this section, we solve the following equation for φ ∈ K⊥
z,ε.

πz,ε ◦ H1
ε (wz,ε)(wz,ε + φ) = 0.
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Since Lz,ε

∣∣
K⊥

z,ε
is invertible (and we shall denote its inverse by L−1

z,ε)

by Proposition 6.3, this is equivalent to solving

φ = −L−1
z,ε ◦πz,ε(F

′
ε (wz,ε))−L−1

z,ε ◦πz,ε(N
1
ε,z(φ)+N2

ε,z(φ)+Mε,z) :≡ Qz,ε(φ)

where Qz,ε is defined in the last equality for every φ ∈ H2
N(Ωε).

By Lemma 5.1, we have

(6.34)

‖Qz,ε(φ1) − Qz,ε(φ2)‖ � C‖N1
ε,z(φ1) − N1

ε,z(φ2)‖L2(Ωε)

+ C‖N2
ε,z(φ1) − N2

ε,z(φ2)‖L2(Ωε)

� C(ε
N
2 + c(‖φ1‖H2(Ωε), ‖φ2‖H2(Ωε)))‖φ1 − φ2‖H2(Ωε)

� C(δ, ε0)‖φ1 − φ2‖H2(Ωε)

if ‖φ1‖H2(Ωε) � δ, ‖φ2‖H2(Ωε) � δ, ε ≤ ε0.

On the other hand, for ‖φ‖H2(Ωε) < δ we have

‖Qz,ε(φ)‖H2 � ‖F ′
ε,z(wz, ε)φ‖L2 + ‖N1

z,ε(φ)‖L2

+ ‖N2
z,ε(φ)‖L2 + ‖Mz,ε‖L2

� c(ϕ1+η(z)
ε,z + δ‖φ‖H2(Ωε))

� c(ϕ1+α̃
ε,z (z) + δ1+α̃)

for some α̃ > 0.

Take δ = ϕε,z(z). Then we have

(6.35) ‖Qz,ε(φ)‖H2 � C(ϕ1+α̃
ε,z (z)).

Equation (6.35) says that Qz,ε(φ) is a continuous map mapping

Bδ(0) ∩ H2
N(Ωε) into −→ Bδ(0) ∩ K⊥

z,ε.

Equation (6.34) says, Qz,ε(φ) is a contracting map if δ and ε0 are

small. Hence by the Contraction Mapping Principle we have

Proposition 6.6. There exists ε > 0 such that for ε < ε0, |z| < εα, 1 <

α < 2 there is a unique φε,z ∈ K⊥
z,ε such that

(6.36) Fε(wz,ε + φε,z) ∈ Cz,ε.
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Furthermore,

(6.37) ‖φε,z‖H2(Ωε) ≤ Cϕ
1+µ

2
ε,z (z).

7. The Reduced Problem

In this section, we shall prove our main result Theorem 1.1.

By Proposition 6.6, for ε � ε0 and |z| � ε, there exists a unique

φε,z ∈ K⊥
z,ε such that

(7.1) H1
ε (wz,ε + φε,z) ∈ Cε,z.

Therefore it is enough to show that for some |z̃| � εα, we have

H1
ε (wz,ε + φz,ε) ⊥ Cz,ε.

To this end, we now define a vector field

Vε,j(z) :=
1

εα−1ϕε,z(z)

[∫
Ωε

H1
ε (wz,ε + φε,z)

∂wε,z

∂zj

]
where z = εa

2
d(0, ∂Ω) + εα+1 ˜̃z, | ˜̃̃z| � 1, where a is such that∫

∂Ω

e<x−P0,a>xidµ0(x) = 0.

The main estimate of this section is

Lemma 7.1. For every 0 < α < α0, the vector field Vε converges

uniformly to V̄0 with ˜̃z ∈ B1(0) as ε → 0, where

V̄0 = (V̄0,1, · · · , V̄0,N),

V̄0,j = γ(

∫
∂Ω

e<x−P0,a>xixjdµ0(x)) ˜̃zi

and γ is given by Lemma 3.4.

Once Lemma 7.1 is proved, then Theorem 1.1 follows easily. In fact,

since 0 is a nondegenerate peak point, V 0 has a nondegenerate zero

at 0 (with degree different from 0). Then Lemma 7.1 and a simple

degree theoretic argument imply that Vε has a zero z = εa
2
d(0, ∂Ω) +

εα+1 ˜̃z with ˜̃z(ε) ∈ B 1
2
(0) for every ε sufficiently small. This solves the
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equation H1
ε (wz,ε + φε,z) = 0 for every ε sufficiently small. Setting

z(ε) = εa
2
d(0, ∂Ω) + εα+1 ˜̃z(ε) and

vε = τσ0(ε) + wz(ε),ε + φε,z(ε)

for x ∈ Ω and ε sufficiently small, it follows then

vε �≡ 0 since φε,z(ε) → 0 in H2(Ωε) as ε → 0

while wz(ε),ε remains bounded away from 0 in H2(Ωε) as ε → 0.

That is, vε is a non-trivial solution of (1.2). By the structure of vε, vε

has all the properties of Theorem 1.1.

It remains to prove Lemma 7.1. To this end, we have∫
Ωε,z

H1
ε (wz,ε + φε,z)

∂wz,ε

∂zj

=

∫
Ωε,z

[F
′
ε (wz,ε)φε,z]

∂wz,ε

∂zj

+

∫
Ωε,z

[N1
ε,z(φε,z)]

∂wz,ε

∂zj

+

∫
Ωε,z

[N2
ε,z(φε,z)]

∂wz,ε

∂zj

+

∫
Ωε,z

Mε,z
∂wz,ε

∂zj

= I1 + I2 + I3 + I4

where Ii, i = 1, 2, 3, 4 are defined by the last equality.

Note that

I1 =

∫
Ωε,z

[
h′

σ(PΩε,zVσ) − h′
σ(Vσ)

]
φε,z

∂wz,ε

∂zj

+
(∫

Ωε,z

h′
σ(Vσ)φε,z

∂ϕε,z

∂zj

= O
(
e−

√
pσ

(2+µ)d(z,∂Ω)
ε

)
.

By Lemma 5.1 and Proposition 6.6 we have

|I2| ≤ C|ϕε,z(z)|1+µ = O
(
e−

√
pσ

(2+µ)d(z,∂Ω)
ε

)
,
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I3 = [N2
ε,z(φε,z)]

∫
Ωε,z

∂wz,ε

∂zj

= O
(
e−

√
pσ

(2+µ)d(z,∂Ω)
ε

)
for some µ > 0.

So we just need to compute I4.

In fact,

I4 =

∫
Ωε,z

[
hσ(PΩε,zVσ) − hσ(Vσ)

]∂PΩε,zVσ

∂zj

=

∫
Ωε,z

h′
σ(Vσ)

∂PΩε,zVσ

∂zj

· (PΩε,zVσ − (Vσ

)
+ O

(
e−

√
pσ

(2+µ)d(z,∂Ω)
ε

)
= ε

∫
Ωε,z

h′
σ(Vσ)

∂Vσ

∂yj

· (PΩε,zVσ − (Vσ)
)

+ O
(
e−

√
pσ

(2+µ)d(z,∂Ω)
ε

)
.

By Lemma 3.4, we conclude the proof of Lemma 7.1. �
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