68 research outputs found

    Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation

    Get PDF
    This project was supported by the National Natural Science Foundation of China (Nos. 41572116, 51576114, ​41630317), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG160602) and the Natural Science Foundation of Fujian Province of China (No. 2016J01254). The authors of the figures that used in presented review are also highly appreciated.Peer reviewedPostprin

    Molecular dynamics simulation of oil displacement using surfactant in a nano-silica pore

    Get PDF
    This work was supported by National Natural Science Foundation of China (52074347) Open Access via the Elsevier agreementPeer reviewedPublisher PD

    A Molecular Dynamics Investigation on Methane Flow and Water Droplets Sliding in Organic Shale Pores with Nano-structured Roughness

    Get PDF
    Acknowledgement The authors would like to thank the University of Aberdeen HPC (High Performance Computing) service for providing computational resources. W. Yong gratefully acknowledge the financial support from China Scholarship Council for his Ph.D. study (No. 201708060349).Peer reviewedPublisher PD

    Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Get PDF
    This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).Peer reviewedPostprin

    A new fracture permeability model of CBM reservoir with high-dip angle in the southern Junggar Basin, NW China

    Get PDF
    The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by the National Major Research Program for Science and Technology of China (2016ZX05043-001), the National Natural Science Fund of China (grant nos. 41602170 and 41772160), the Royal Society International Exchanges-China NSFC Joint Project (grant nos. 4161101405 and RG13991-10), and Key Research and Development Projects of the Xinjiang Uygur Autonomous Region (2017B03019-01).Peer reviewedPublisher PD

    Antirheumatoid Arthritis Activities and Chemical Compositions of Phenolic Compounds-Rich Fraction from Urtica atrichocaulis, an Endemic Plant to China

    Get PDF
    Urtica atrichocaulis, an endemic plant to China, is commonly used to treat rheumatoid arthritis even though its pharmaceutical activities and chemical constituents were not studied. Herein, we reported our investigations on the chemical compositions of the phenolic compounds-rich fraction from U. atrichocaulis (TFUA) and their antirheumatoid arthritis activities. We found that the TFUA significantly inhibited the adjuvant-induced rats arthritis, carrageenin-induced rats paw edema, cotton pellet-induced mice granuloma, and the acetic acid-induced mice writhing response. Our phytochemical investigations on the TFUA resulted in the first-time isolation and identification of 17 phenolic constituents and a bis (5-formylfurfuryl) ether. The extensive HPLC analysis also revealed the chemical compositions of TFUA. Our further biological evaluation of the main phenolic components, individually and collectively, indicated that the antirheumatoid arthritis activities of TFUA were the combined effect of multiple phenolic constituents

    Towards machine learning approaches for predicting the self-healing efficiency of materials

    Get PDF
    Acknowledgement This research is supported by the Engineering and Physical Sciences Research Council (EPSRC) funded Project on New Industrial Systems: Manufacturing Immortality (EP/R020957/1). The authors are also grateful to the Manufacturing Immortality consortium.Peer reviewedPublisher PD

    In silico screening of potentially bioactive-anti-functional dyspepsia constituents of Magnoliae officinalis Cortex based on molecular docking and network pharmacology

    Get PDF
    Purpose: To screen for bioactive anti-functional dyspepsia compounds from Magnoliae officinalis Cortex (Hou Po) and to identify the mechanism(s) of action involved.Methods: The compounds of Hou Po were collected from the literature. The related target proteins were identified from DrugBank. Through  “Libdock” module of Discovery Studio 3.5, the compounds were matched with related target proteins. Taking the Libdock score of the original ligand with target protein as standard, components with higher scores than this standard were considered as potential bioactive compounds. Based on Cytoscape software, the interaction networks of the bioactive compound-target protein complexes were mapped. On the other hand, the online DAVID database was used to analyze the GO enrichment and KEGG pathway of each target.Results: A total of 199 chemical constituents and 13 correlated target proteins were obtained. One hundred and thirty-nine (139) potential bioactive constituents were acquired based on molecular docking. Thirty-one (31) bioactive compounds were selected based on degree values in networkanalysis. “Palmitone” and “magnolignan G” which had the highest degree values were considered promising and leading compounds. The result of gene enrichment analysis showed that the bioactive compounds exerted their effects mainly via “neuroactive ligand-receptor interaction” pathway and “Cholinergic synapse” pathways.Conclusion: Based on molecular docking and network pharmacology technique, the material basis for the use of Hou Po in the treatment of FD has been revealed. This finding provides a useful guide in the development of Hou Po-based anti-FD drugs. Keywords: Magnolia officinalis, Hou Po, Molecular docking, Functional dyspepsia, Network pharmacolog

    Altered expression of glycan patterns and glycan-related genes in the medial prefrontal cortex of the valproic acid rat model of autism

    Get PDF
    Autism spectrum disorders (ASD) represent a group of neurodevelopmental defects characterized by social deficits and repetitive behaviors. Alteration in Glycosylation patterns could influence the nervous system development and contribute to the molecular mechanism of ASD. Interaction of environmental factors with susceptible genes may affect expressions of glycosylation-related genes and thus result in abnormal glycosylation patterns. Here, we used an environmental factor-induced model of autism by a single intraperitoneal injection of 400 mg/kg valproic acid (VPA) to female rats at day 12.5 post-conception. Following confirmation of reduced sociability and increased self-grooming behaviors in VPA-treated offspring, we analyzed the alterations in the expression profile of glycan patterns and glycan-related genes by lectin microarrays and RNA-seq, respectively. Lectin microarrays detected 14 significantly regulated lectins in VPA rats, with an up-regulation of high-mannose with antennary and down-regulation of Siaα2-3 Gal/GalNAc. Based on the KEGG and CAZy resources, we assembled a comprehensive list of 961 glycan-related genes to focus our analysis on specific genes. Of those, transcription results revealed that there were 107 differentially expressed glycan-related genes (DEGGs) after VPA treatment. Functional analysis of DEGGs encoding anabolic enzymes revealed that the process trimming to form core structure and glycan extension from core structure primarily changed, which is consistent with the changes in glycan patterns. In addition, the DEGGs encoding glycoconjugates were mainly related to extracellular matrix and axon guidance. This study provides insights into the underlying molecular mechanism of aberrant glycosylation after prenatal VPA exposure, which may serve as potential biomarkers for the autism diagnosis
    corecore