1,463 research outputs found

    Measurement of the squeezed vacuum state by a bichromatic local oscillator

    Full text link
    We present the experimental measurement of a squeezed vacuum state by means of a bichromatic local oscillator (BLO). A pair of local oscillators at ±\pm5 MHz around the central frequency ω0\omega_{0} of the fundamental field with equal power are generated by three acousto-optic modulators and phase-locked, which are used as a BLO. The squeezed vacuum light are detected by a phase-sensitive balanced-homodyne detection with a BLO. The baseband signal around ω0\omega_{0} combined with a broad squeezed field can be detected with the sensitivity below the shot-noise limit, in which the baseband signal is shifted to the vicinity of 5 MHz (the half of the BLO separation). This work has the important applications in quantum state measurement and quantum informatio

    Properties of some statistics for AR-ARCH model with application to technical analysis

    Get PDF
    AbstractIn this paper, we investigate some popular technical analysis indexes for AR-ARCH model as real stock market. Under the given conditions, we show that the corresponding statistics are asymptotically stationary and the law of large numbers hold for frequencies of the stock prices falling out normal scope of these technical analysis indexes under AR-ARCH, and give the rate of convergence in the case of nonstationary initial values, which give a mathematical rationale for these methods of technical analysis in supervising the security trends

    Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe façade-based heat pump water heating system

    Get PDF
    The aim of the paper was to present a dedicated theoretical investigation into the thermal performance of a novel solar loop-heat-pipe façade based heat pump water heating system. This involved thermo-fluid analyses, computer numerical model development, the model running up, modelling result analyses and conclusion. An energy balance network was established on each part and the whole range of the system to address the associated energy conversion and transfer processes. On basis of this, a computer numerical model was developed and run up to predict the thermal performance of such a system at different system configurations, layouts and operational conditions. It was suggested that the loop heat pipes could be filled with either water, R134a, R22 or R600a; of which R600a is the favourite working fluid owing to its relatively larger heat transfer capacity and positive pressure in operation. Variations in the system configuration, i.e., glazing covers, heat exchangers, would lead to identifiable differences in the thermal performance of the system, represented by the thermal efficiency and COP. Furthermore, impact of the external operational parameters, i.e., solar radiation and ambient air temperature, to the system's thermal performance was also investigated. The research was based on an innovative loop-heat-pipe façade and came up with useful results reflecting the thermal performance of the combined system between the façade and heat pump. This would help promote development and market penetration of such an innovative solar heating technology, and thus contribute to achieving the global targets in energy saving and carbon emission reduction

    Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system

    Get PDF
    Photovoltaic (PV) semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T) panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel), and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment

    VPM/CFD-Based Research on Rotor Performance and Loads of Individual Blade Control Rotor System

    Get PDF
    This paper aims to explore the effect of individual blade control (IBC) on aerodynamic performance of helicopter rotor and explain its formation mechanism. For this purpose, the vortex particle method (VPM)-computational fluid dynamics (CFD) coupling method was proposed to calculate rotor aerodynamic performance under open-loop IBC active control. Specifically, the near-blade flow field was calculated by the CFD method, while the far-field flow field was solved by the VPM method. In this way, the entire flow field was computed through the information interaction between the two calculated fields. Then, the UH-60A rotor was selected as an example to verify the established VPM/CFD method. First, the proposed method was proved valid; then, the effect of control frequency and phase on the helicopter performance was analysed under different forward flight conditions; finally, the mechanism of IBC control was examined by comparing the lift coefficient distribution and the induced inflows of the optimal control and the worst control. The results showed that proper IBC control parameters can lower the required power of the rotor to some extent, but the optimal control parameters vary with flight states. Comparatively, the lift distribution is more even and the induced flows are less fluctuating under optimal control than under worst control

    Single-valued neutrosophic TODIM method based on cumulative prospect theory for multi-attribute group decision making and its application to medical emergency management evaluation

    Get PDF
    In recent years, emergent public health events happen from time to time, which puts forward new requirements for the establishment of a perfect medical emergency system. It is a new direction to evaluate the effectiveness of medical emergency systems from the perspective of multi-attribute group decision making (MAGDM) issues. In such article, we tend to resolve the MAGDM issues under single-valued neutrosophic sets (SVNSs) with TODIM method based on cumulative prospect theory (CPT). And the single-valued neutrosophic TODIM method based on CPT (CPT-SVNTODIM) for MAGDM issues are developed. This new method not only inherits advantages of classical TODIM method, but also has further improvement in some aspects. For example, we set up the entropy to calculate attribute weights for ensuring the more objective decision-making process. Furthermore, it is also an extension of MAGDM method to utilize single-valued neutrosophic numbers (SVNNs) to depict decision makers’ ideas. In addition, we introduce the application of CPT-SVN-TODIM method in the assessment of medical emergency management. And finally, the reliability of CPT-SVN-TODIM method is confirmed by comparing with some other methods
    corecore