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a b s t r a c t

In this paper, we investigate some popular technical analysis indexes for AR-ARCH model
as real stockmarket. Under the given conditions, we show that the corresponding statistics
are asymptotically stationary and the law of large numbers hold for frequencies of the
stock prices falling out normal scope of these technical analysis indexes under AR-ARCH,
and give the rate of convergence in the case of nonstationary initial values, which give a
mathematical rationale for these methods of technical analysis in supervising the security
trends.
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1. Introduction

As long as financial markets have existed, people have tried to forecast them, in the hope that good forecasts would bring
them great fortunes. Since Charles H. Dow first introduced the Dow theory in the late 1800s, technical analysis has been
extensively used in stock market. The term ‘‘technical analysis’’ in general contains a large variety of trading techniques,
which are based on past movements of asset price and a few other related variables. The use of trading rules to detect
patterns in the time series of asset prices. There are numerous methods within technical analysis, which are principally
independent from each other.
It is well-known that the efficiency of these indexes is ‘proved’ by the observed relative frequency of the occurrence of the

corresponding behaviors of stock prices. In otherwords, the traders use the daily (hourly, weekly, . . . ) stock prices as samples
of certain statistics and use the observed relative frequency to show the validity of these well-known indexes. However,
these samples are just the discrete observations of a realized path of a stochastic process, which are not independent, so
the classical sample survey theory (especially the law of large numbers) does not apply to. But Liu et al. [7], and Zhu [11]
found that some important technical analysis indexes are stationary process or the transformation of theirs. Liu et al. [7]
discussed the Bollinger bands for Black–Scholes model as real stock market. Under Black–Scholes model, they introduced
the statistics U (n)t calculated according to the formula of the Bollinger Bands, which is stationary and {U (n)t+kn}k=1,2,... are
mutually independent for each fixed t ≥ 0. Zhu [11] extended the above results to another index Relative Strength Index
(RSI in short) for Black–Scholes model. Since we know that the frequency of the occurrence of stationary process can be
computed, so these results have laid the theoretical foundation for statistical application of the technical analysis of stock
price.
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Recently, much attention has been paid to the AR-ARCHmodels. Properties of various AR-ARCH typemodels are studied,
especially the stationarity and geometric ergodicity are considered by Ango Nze [1], Lu [8], Lu and Jiang [9], Cline and
Pu [4] and others. We consider log return process ξt = log St − log St−1. In the following we assume that the log return
ξt is generated by a nonlinear autoregressive(AR) model with an autoregressive conditional heteroscedastic (ARCH) term
(denoted by AR-ARCH) as follows:

ξt = a(ξt−1, . . . , ξt−p)+ b(ξt−1, . . . , ξt−p)et , (1.1)

where a and b are finitely piecewise continuous functions and {et} is an independent identically distributed (i.i.d. in short)
error sequence. The state vector for the time series is Xt = (ξt , . . . , ξt−p+1). The nonlinear autoregression function a(x)
is continuous on individual, connected subregions of Rp; the boundaries of these regions are called thresholds, hence the
nomenclature for the model. Frequently, a(x) is assumed to be linear on each of these regions. Likewise, this model has a
state dependent conditional variance, b2(x) = var(ξt |Xt−1 = x) if var(et) = 1, which typically is of the order of magnitude
of ‖x‖2. This provides the conditional heteroscedasticity (ARCH) behavior and for our purposes it is also assumed to have
thresholds. Since the time series (1.1) is embedded into {Xt}, which is a Markov chain, it will have a stationary distribution
when the Markov chain is ergodic.
In this paper, we aim at discussing the corresponding statistics’ properties of some popular technical analysis indexes

Bollinger bands, RSI and Rate of Change Index (ROC in short) for discrete-time AR-ARCH model as real stock market. Under
the given conditions, we show that the corresponding statistics are asymptotical stationary and the law of large numbers
hold for frequencies of the stock prices falling out normal scope of these technical analysis indexes under AR-ARCH, and
give the rate of convergence in the case of nonstationary initial values.
The paper is organized as follows. Section 2 introduces the definition of some technical analysis indexes, Section 3

contains some Markov chain terminology and relevant results, in Section 4 the asymptotically stationary properties of
corresponding statistics are investigated, in Section 5 presents the law of large numbers for frequencies of these statistics,
in Section 6 the proofs of main results are given, and we conclude the paper in the last section.

2. Definitions of some technical analysis indexes

Let St be observed stock price. Let us introduce the definitions of these technical analysis indexes as follows:
(1) Bollinger Bands Definition:
Denote by

S
(n)
t =

1
n

n−1∑
i=0

St−i, Ŝ(n)t =
1
n∑
i=1
i

n−1∑
i=0

(n− i)St−i

and

σ
(n)
t =

√√√√ 1
n− 1

n−1∑
i=0

(St−i − S
(n)
t )

2.

Bollinger bands consist of three curves draw in relation to securities prices, the curve γt = Ŝ
(n)
t is called themiddle Bollinger

band, the curve γ−t = Ŝ
(n)
t − 2σ

(n)
t is called the lower Bollinger band and γ+t = Ŝ

(n)
t + 2σ

(n)
t is called the upper Bollinger

band, where n is the number of selected periods. Usually we take n = 12 or 20. Bollinger [2] introduced this pair of bands to
provide a relative definition of high and low for a stock price in the early 1980s. By definition the stock price is ‘‘high’’ at the
upper band and ‘‘low’’ at the lower band. The closer the prices move to the upper band, the more overbought the market,
and the closer the prices move to the lower band, the more oversold the market.
(2) RSI (Relative Strength Index) Definition:
If we denote

1St = St+1 − St , 1S+t = (St+1 − St) ∨ 0,

then n-day RSI is defined as

Υ
(n)
t = 100×

n∑
i=1
1S+t−i

n∑
i=1
|1St−i|

(∀t > n),

where n is the number of selected periods.
RSI was proposed byWelles Wilder Jr. in 1978. The market’s condition is reflected by calculating the correlative value of

the strength in buys and sells in a period of time. In a normal market, the price can be stabilized only when the both sides
of the business strength obtain the balance. RSI takes its values in [0, 100]. In general, RSI value maintains above 50 for a
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strong trend market, and is lower than 50 for a weak trend market. RSI may be used in judging the ultra-buy and ultra-sell
in market. Take 9-day RSI as the example, RSI above 80 may be regarded as ultra-buy area, and below 20 may regarded as
ultra-sell area. It is a early warning signal of the price possibly reverse when the market enters the ultra-buy area or the
ultra-sell area. Investors always pay closely attention on the market when this signal appears.
(3) ROC (Rate of Change Index) Definition:
If we denote closing price by St and closing price of n-day before by St−n, then n-day ROC is defined as

W (n)
t = 100×

St − St−n
St−n

(∀t > n),

where n is the number of selected periods. Usually we take n = 12. The ROC must establish the antenna and the grounding
also. But unlike other ultra-buy or ultra-sell indexes, its antennas and grounds are indefinite.When ROC undulates in normal
scope, it is time to sell out while ROC rises to the first ultra-buy line (5) and it is time to buy in while ROC drops to the first
ultra-sell line (−5). After ROC breaking through the first ultra-buy line upward, the rising trendmostly endswhen it reaches
the second ultra-buy line (10). And the dropping trendmostly ends when ROC reaches the second ultra-sell line (−10) after
it breaks through the first ultra-sell line downward.

3. Some Markov chain terminology and relevant results

This section are drawn from the papers in [3,10,4]. Suppose X := (Xk, k ∈ Z) is a Markov chain. For any n ≥ 1, define
the following dependent coefficients:

αX (n) := sup
k∈Z

sup
A∈σ(Xk),B∈σ(Xn+k)

|P(A ∩ B)− P(A)P(B)|; (3.1)

βX (n) := sup
k∈Z

sup
Ai∈σ(Xk),Bj∈σ(Xn+k)

1
2

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj)− P(Ai)P(Bj)|, (3.2)

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AI} and {B1, . . . , BJ} ofΩ such that Ai ∈ σ(Xk) for
each i and Bj ∈ σ(Xn+k) for each j. The Markov chain X is said to be
‘strongly mixing’ (or ‘α-mixing’) if αX (n)→ 0 as n→∞;
‘absolutely regular’ (or ‘β-mixing’) if βX (n)→ 0 as n→∞.
The two mixing coefficients are ordered as follows:

αX (n) ≤ βX (n). (3.3)

So that β-mixing implies α-mixing.
We denote Pn(x, A) = P(Xn ∈ A|X0 = x). AMarkov chain {Xt} is V-uniformly ergodic, i.e. for some ρ < 1 and some fixed

constantM <∞,

‖Pn(x, ·)− π(·)‖V ≤ MV (x)ρn, x ∈ R, n ∈ N (3.4)

where ‖µ(·)‖V = sup|f |≤V |µ(f )| and
∫
V (x)π(dx) < ∞. For any signed measure µ on B, we define the total variation

norm as ‖µ‖ = sup|g|≤1 |µ(g)|. A Markov chain {Xt} is said to be geometrically ergodic if there exist a probability measure
π on (R,B), a constant 0 < ρ < 1, and a π-integrable nonnegative measurable function γ (x) such that

‖Pn(x, ·)− π(·)‖ ≤ ρnγ (x), ∀n ∈ Z+, ∀x ∈ R. (3.5)

If we restrict to functions V on the left-hand side of (3.4) that satisfy |V (x)| ≤ 1, we obtain the total variation norm
‖Pn(x, )− π(·)‖. So the inequality (3.4) is a strong version of the condition of geometric ergodicity.
Cline and Pu [4] provided the following result:

Proposition 3.1 (Cline and Pu [4]). Suppose model (1.1) satisfy the following conditions: (i) The distribution of et has Lebesgue
density f which is locally bounded away from 0. Also, b is positive, locally bounded and locally bounded away from 0. (ii) supu(1+
|u|)f (u) <∞ and E(|e1|r0) <∞ for some r0 > 0. (iii) a(x)/(1+‖x‖) and b(x)/(1+‖x‖) are bounded. If there exist nonnegative
ci with

∑p
i=1 ci < 1, r > 0 and K <∞ such that E(|ξ1|

r
|X0 = x) ≤ K +

∑p
i=1 ci|xi|

r , for all x = (x1, . . . , xp) ∈ Rp, then {Xt}
is V-uniformly ergodic with V (x) = 1 +

∑p
i=1 di|xi|

r for some positive d1, . . . , dp. Furthermore, the stationary distribution has
finite rth moment.

4. Asymptotically stationary property

In the following we incorporate the nonstationary case into our considerations. Let St be observed stock price by the
model (1.1), then
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St = S0 exp

{
t∑
k=1

(a(ξk−1, . . . , ξk−p)+ b(ξk−1, . . . , ξk−p)ek)

}
. (4.1)

We denote

g(t, i, j) = exp

{
t−j∑
k=t−i

(a(ξk−1, . . . , ξk−p)+ b(ξk−1, . . . , ξk−p)ek)

}
. (4.2)

U (n)t = f (g(t, n− 1, 0), . . . , g(t, n− 1, n− 1)), (4.3)

where f be a measurable function: Rn → R.

Theorem 4.1. Under the conditions of Proposition 3.1, the process {U (n)t }t≥n is asymptotically stationary.

Remark 4.1. Using the above conclusion, we can draw a series of asymptotically stationary processes from AR-ARCHmodel
so long as the desired conditions are satisfied. This fact can be applied to the technical analysis indexes which we have
explained before. The conclusions list in the following corollaries.

Corollary 4.1. Let St be the stock price generated by the model (1.1), Λ
(n)
t =

St−Ŝ
(n)
t

σ
(n)
t

(∀t ≥ n), then the process {Λ(n)t }t≥n is

asymptotically stationary under the conditions of Proposition 3.1.

Proof. We can obtain immediately by using (4.2):

St = St−ng(t, n− 1, 0),

Ŝ(n)t = St−n
1
n∑
i=1
i

n−1∑
i=0

(n− i)g(t, n− 1, i),

S
(n)
t = St−n

1
n

n−1∑
i=0

g(t, n− 1, i),

and

(n− 1)

[
σ
(n)
t

St−n

]2
=

n−1∑
i=0

(
g(t, n− 1, i)−

1
n

n−1∑
i=0

g(t, n− 1, i)

)2
.

So {Λ(n)t }t≥n is a function of (g(t, n − 1, 0), . . . , g(t, n − 1, n − 2)). So by Theorem 4.1 we have Λ
(n)
t is asymptotically

stationary. �

Corollary 4.2. Let St be the stock price generated by the model (1.1), then the process

Υ
(n)
t = 100×

n∑
i=1
1S+t−i

n∑
i=1
|1St−i|

(∀t > n)

is asymptotically stationary under the conditions of Proposition 3.1.

Proof. We can obtain immediately by using (4.2):

St = St−ng(t, n− 1, 0),
St−i = St−ng(t, n− 1, i).

Then

Υ
(n)
t = 100×

n∑
i=1
(g(t, n− 1, i− 1)− g(t, n− 1, i)) ∨ 0

n∑
i=1
|g(t, n− 1, i− 1)− g(t, n− 1, i)|

,

herewedecree g(t, n−1, n) = 1. Then it is clearly thatΥ (n)
t is ameasurable function of (g(t, n−1, 0), . . . , g(t, n−1, n−1)).

So by Theorem 4.1 we have Υ (n)
t is asymptotically stationary. �
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Similarly, we have the following corollary.

Corollary 4.3. Let St be the stock price generated by the model (1.1), then the process

W (n)
t =

St − St−n
St−n

(∀t > n)

is asymptotically stationary under the conditions of Proposition 3.1.

5. Law of large numbers

Denote for i ≥ n, K (n)Γ ,i = I[U(n)i ∈Γ ]
, where Γ is a subset of R. Let

V (n)N,Γ =
1

N + 1

N∑
i=0

K (n)Γ ,n+i

which is the observed frequency of the events [U (n)n+i ∈ Γ ] (i = 0, 1, . . . ,N), then we can obtain the law of large numbers:

Theorem 5.1. Under the conditions of Proposition 3.1, if {Xt} is initialized from nonstationary measure ν and satisfy∫
V (x)ν(dx) <∞, then there exist a constant C̃ such that

E|V (n)N,Γ − P0[U
(n)
n ∈ Γ ]|

2
≤

C̃
N + 1

.

Remark 5.1. From the above theorem, it is reasonable to use the stationary distribution of U (n)n to calculate the observed
frequency V (n)N,Γ . We can apply this conclusion to Λ

(n)
t , Υ

(n)
t and W (n)

t . All of the three processes change between a normal
scope. Out this normal scope, investors may buy in or sell out stocks which canmake the values ofΛ(n)t , Υ

(n)
t andW (n)

t come
back into the normal scope. For example, the normal scope ofΛ(n)t is [−2, 2]. Υ

(n)
t always changes between 20 and 80.W (n)

t
also has indefinite antennas and grounds. For simplicity, we unify the lower value of the normal scope be α and the upper
value be β . As a application, we have the following corollaries.

Corollary 5.1. Denote for i ≥ n, H(n)i = I[|Λ(n)i |≥2]
. Let

J (n)N =
1

N + 1

N∑
i=0

H(n)n+i

which is the observed frequency of the events [|Λ(n)n+i| ≥ 2] (i = 0, 1, . . . ,N), i.e. the frequency of the stock falling out of the
Bollinger Bands. Let P0(.) denote the stationary distribution of the asymptotic stationary process {Λ

(n)
t }t≥n, then there exist a

constant C̃ such that

E|J (n)N − P0[|Λ
(n)
n | ≥ 2] |

2
≤

C̃
N + 1

.

Corollary 5.2. Denote for H(n)i = I[Υ (n)i ∈Γ ]
, where Γ = [0, 20] ∪ [80, 100]. Let P0(.) denote the stationary distribution of the

asymptotic stationary process {Υ (n)
t }t≥n and

J (n)N =
1

N + 1

N∑
i=0

H(n)n+i,

then there exist a constant C̃ such that

E|J (n)N − P0[Υ
(n)
n ∈ Γ ]|

2
≤

C̃
N + 1

.

Corollary 5.3. Denote for H(n)i = I[W (n)i ∈Γ ]
, where Γ = [−∞, α] ∪ [β,∞]. and (α, β) are the indefinite antenna and ground

of ROC. Let P0(.) denote the stationary distribution of the asymptotic stationary process {W
(n)
t }t≥n and

J (n)N =
1

N + 1

N∑
i=0

H(n)n+i,
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then there exist a constant C̃ such that

E|J (n)N − P0[W
(n)
n ∈ Γ ]|

2
≤

C̃
N + 1

.

6. The proofs of main results

Proof of Theorem 4.1. From the expression of (4.2), we can see clearly that g(t, i, j)0≤j≤i≤n−1 is just a function of
(Xk−1, ek)k=t−n+1,...,t . We know Xt−1 be independent of et and Xt have stationary distribution for all t ≥ 0 by Proposition 3.1.
Without loss of generality, we suppose Xt is initialized from its stationary distribution, then (Xk−1, ek)k=t−n+1,...,t is a two-
dimensional stationary process. Then we have for anym ≥ 0,

(g(t, n− 1, 0), . . . , g(t, n− 1, n− 1))(=)(g(t +m, n− 1, 0), . . . , g(t +m, n− 1, n− 1))

where X(=)Y denote X and Y have the same distribution. So

{U (n)t }t≥n(=){U
(n)
t+m}t≥n

and the proof is complete. �

In order to prove Theorem 5.1, we need the following lemmas.

Lemma 6.1. Let Fi denote the σ -field generated by (Xk−1, ek)1≤k≤i, the following formula holds:

E|V (n)N,Γ −
1

N + 1

N∑
i=0

P[U (n)n+i ∈ Γ |Fi] |
2
≤

n
N + 1

.

Proof. Since

V (n)N,Γ =
1

N + 1

n−1∑
j=0

∑
{k; 0≤kn+j≤N}

K (n)Γ ,(k+1)n+j.

Denote for each fixed j,

Xj =
∑

{k;0≤kn+j≤N}

[K (n)Γ ,(k+1)n+j − P[U
(n)
(k+1)n+j ∈ Γ |Fkn+j]].

Let

Zk,j = K
(n)
Γ ,(k+1)n+j − P[U

(n)
(k+1)n+j ∈ Γ |Fkn+j].

Then we can obtain

EZ(k+1),jZk,j = E[E(Z(k+1),jZk,j|F(k+1)n+j)] = E[Zk,jE(Z(k+1),j|F(k+1)n+j)] = 0.

So

EX2j =
∑

{k;0≤kn+j≤N}

EZ2kj.

By Cr inequality,

E

∣∣∣∣∣V (n)N,Γ − 1
N + 1

N∑
i=0

P[U (n)n+i ∈ Γ |Fi]

∣∣∣∣∣
2

= E

∣∣∣∣∣ 1
N + 1

n−1∑
j=0

Xj

∣∣∣∣∣
2

≤ n
n−1∑
j=0

E
[
1

N + 1
Xj

]2

=
n

(N + 1)2

n−1∑
j=0

∑
{k;0≤kn+j≤N}

EZ2k,j =
n

N + 1
EZ2k,j ≤

n
N + 1

.

Thus, the proof is complete. �

Lemma 6.2. Suppose the sequence {Xn, n ≥ 1} is α-mixing, X ∈ F k
−∞
, Y ∈ F ∞k+n and 0 ≤ X ≤ c1, 0 ≤ Y ≤ c2, then

|EXY − EXEY | ≤ c1c2α(n).
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Proof. Since X, Y are nonnegative random variables,then we have

EXY =
∫
∞

0

∫
∞

0
xydF(x, y) =

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0
I{s<x}I{t<y}dsdtdF(x, y)

=

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0
I{s<x}I{t<y}dF(x, y)dsdt

=

∫
∞

0

∫
∞

0
P(X > s, Y > t)dsdt.

So by the property of α-mixing,

|EXY − EXEY | =
∣∣∣∣∫ ∞
0

∫
∞

0
(P(X > s, Y > t)− P(X > s)P(Y > t))dsdt

∣∣∣∣
=

∣∣∣∣∫ c1

0

∫ c2

0
(P(X > s, Y > t)− P(X > s)P(Y > t))dsdt

∣∣∣∣
≤ c1c2α(n). �

Let π be the unique stationary measure of Markov chain {Xn}. Define

ζn(τ ) :=

∫
‖Pn(x, ·)− π(·)‖τ(dx) (6.1)

for any probability measure τ onB. ζn may be regard as a measure of dependence of the random variables X1, X2, . . . . The
following Lemma gives a close relationship between quantities ζn and β-mixing coefficients:

Lemma 6.3 (Liebscher [6]). The following inequality holds for a Markov sequence {Xn} with initial distribution ν:

βn ≤ 3ζm(ν)+ ζm(π) with m := [n/2]. (6.2)

Here [x] is the greatest integer l ≤ x. In the case of a stationary Markov chain we have even βn = ζn(π) (see [5]).

By Proposition 3.1, there exist a ρ, ρ ∈ (0, 1) andM <∞ such that

‖Pn(x, ·)− π(·)‖ ≤ MV (x)ρn, ∀n ∈ Z+, ∀x ∈ R

where ρ,M are constants. If {Xt} is initialized from its invariantmeasureπ , thenβX (n) ≤ cρn, where c =
∫
MV (x)π(dx). By

the proof of Theorem 4.1, we know that {U (n)t }t≥n is a function of (g(t, n− 1, 0), . . . , g(t, n− 1, n− 2)), {g(t, i, j)0≤j<i≤n−1}
are just functions of {(Xk−1, ek)k=t−n+1,...,t}. Thus, we can obtain

P[U (n)n+i ∈ Γ |Fi] = P[U
(n)
n+i ∈ Γ |Xi]

1
= f (Xi), (6.3)

where f is a deterministic measurable function and 0 ≤ f ≤ 1.

Lemma 6.4. Under the conditions of Proposition 3.1, if {Xt} is initialized from nonstationary measure ν and satisfy∫
V (x)ν(dx) <∞, then there exist a constant C0 such that

E

∣∣∣∣∣ 1
N + 1

N∑
i=0

f (Xi)− P0[U (n)n ∈ Γ ]

∣∣∣∣∣
2

≤
C0
N + 1

,

where P0[U
(n)
n ∈ Γ ] = E(P[U

(n)
n+i ∈ Γ |Xi is stationary]).

Proof. Since

E

∣∣∣∣∣ 1
N + 1

N∑
i=0

f (Xi)− P0[U (n)n ∈ Γ ]

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣ 1
N + 1

N∑
i=0

f (Xi)−
1

N + 1

N∑
i=0

Ef (Xi)

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ 1
N + 1

N∑
i=0

Ef (Xi)− P0[U (n)n ∈ Γ ]

∣∣∣∣∣
2

.
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We write d =
∫
MV (x)ν(dx). By Lemmas 6.2 and 6.3, we have

E

∣∣∣∣∣ 1
N + 1

N∑
i=0

f (Xi)−
1

N + 1

N∑
i=0

Ef (Xi)

∣∣∣∣∣
2

≤
1

(N + 1)2

N∑
i=0

D(f (Xi))+
2

(N + 1)2
∑

0≤i<j≤N

|Ef (Xi)f (Xj)− Ef (Xi)Ef (Xj)|

≤
1

N + 1
+

2
(N + 1)2

∑
0≤i<j≤N

αX (j− i)

≤
1

N + 1
+

2
(N + 1)2

N∑
k=1

(N + 1− k)βX (k)

≤
1

N + 1
+

2
(N + 1)2

N∑
k=1

(N + 1− k)(3d+ c)ρ
k
2−1

≤

1+ 2(3d+ c) 1

ρ
1
2 −ρ

N + 1
.

Note that 0 ≤ f ≤ 1 and Xt is exponential ergodic, we have∣∣∣∣∣ 1
N + 1

N∑
i=0

Ef (Xi)− P0[U (n)n ∈ Γ ]

∣∣∣∣∣
2

=
1

(N + 1)2

∣∣∣∣∣ N∑
i=0

(Ef (Xi)− P0[U (n)n ∈ Γ ])

∣∣∣∣∣
2

≤
1

(N + 1)2
∑
0≤i,j≤N

∣∣(Ef (Xi)− P0[U (n)n ∈ Γ ])(Ef (Xj)− P0[U (n)n ∈ Γ ])∣∣
≤

1
N + 1

N∑
i=0

|Ef (Xi)− P0[U (n)n ∈ Γ ]|

≤
1

N + 1

N∑
i=0

∣∣∣∣∫ ∫
f (y)P i(x, dy)ν(dx)−

∫ ∫
f (y)π(dy)ν(dx)

∣∣∣∣
≤

1
N + 1

N∑
i=0

∫ ∣∣∣∣∫ f (y)(P i(x, dy)− π(dy))∣∣∣∣ ν(dx)
≤

1
N + 1

N∑
i=0

∫
‖P i(x, ·)− π(·)‖ν(dx)

≤
1

N + 1
d

1− ρ
.

So we take C0 = max{2(1+ 2(3d+ c) 1

ρ
1
2 −ρ

), 2( d
1−ρ )}, then

E

∣∣∣∣∣ 1
N + 1

N∑
i=0

f (Xi)− P0[U (n)n ∈ Γ ]

∣∣∣∣∣
2

≤
C0
N + 1

.

Thus, we complete the proof. �

Proof of Theorem 5.1. Since

E|V (n)N,Γ − P0[U
(n)
n ∈ Γ ] |

2
≤ 2E

∣∣∣∣∣V (n)N,Γ − 1
N + 1

N∑
i=0

P[U (n)n+i ∈ Γ |Fi]

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣ 1
N + 1

N∑
i=0

f (Xi)− P0[U (n)n ∈ Γ ]

∣∣∣∣∣
2

.

We take C̃ = 2max{n, C0}, then the proof is complete by Lemmas 6.1 and 6.4. �

7. Conclusions

It is well known that technical analysis has been a part of financial practice for many decades, but this discipline has not
received the same level of academic scrutiny and acceptance as more traditional approaches such as fundamental analysis,
but we show here that if we recognize the current popular stock price models, then we can do statistics based on relative
frequency of occurrence for some technical analysis indexes.



530 X. Huang, W. Liu / Journal of Computational and Applied Mathematics 225 (2009) 522–530

In this paper, we get some asymptotically stationary processes from the unstable process St and prove the law of large
numbers for frequencies of some statistics with application to technical analysis, which can help us to findmany interesting
things, unfortunately, we do not find a method such that the derived constant C̃ in Theorem 5.1 is concrete. So it is hoped
that future research will propose a method(s) to give sharper rate of convergence, and in addition, the related questions
both in financial investment tactics and theoretical research should be worthy for further study.

Acknowledgements

The authors are grateful to the responsible editor and the anonymous referees for their valuable comments and
suggestions, which have improved the earlier version of this paper. The authors would like to express their sincere
appreciations to Prof. Weian Zheng for useful remarks and discussions.
This work is supported by a grant from National Natural Science Foundation of China (10671072 and 10726075), by

Doctoral Program Foundation of the Ministry of Education of China (20060269016), and by Anhui Normal University
Scientific Research Fund (2007xqn55 and 2008xqn44).

References

[1] P. Ango Nze, Critéres d’ergodicité de quelques modéles á représentation markovenne, C.R. Acad. Sci. Paris 315 (1) (1992) 1301–1304.
[2] J. Bollinger, Bollinger on Bollinger Bands, McGaw Hill, New York, 2002.
[3] R.C. Bradley, Basic properties of strong mixing conditions, A survey and some open questions, Probab. Surveys 2 (2005) 107–144.
[4] D.B.H. Cline, H.H. Pu, Stability and the Lyapounov exponent of threshold AR-ARCH models, Ann. Appl. Probab. 14 (4) (2004) 1920–1949.
[5] Y. Davydov, Mixing conditions for Markov chains, Theory Probab. Appl. XVIII (1973) 312–328.
[6] E. Liebscher, Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes, J. Time Ser.
Anal. 26 (5) (2005) 669–689.

[7] W. Liu, X. Huang, W. Zheng, Black–Scholes model and Bollinger bands, Physica A 371 (2) (2006) 565–571.
[8] Z. Lu, On the geometric ergodicity of a nonlinear autoregressive model with an autoregressive conditional heteroscedastic term, Statist. Sin. 8 (1998)
1205–1217.

[9] Z. Lu, Z. Jiang, L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term, Statist. Probab. Lett. 51 (2001) 121–130.
[10] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 1993.
[11] W. Zhu, Master Thesis, Department of Statistics, ECNU, Shanghai, China, 2006.


	Properties of some statistics for AR-ARCH model with application to technical analysis
	Introduction
	Definitions of some technical analysis indexes
	Some Markov chain terminology and relevant results
	Asymptotically stationary property
	Law of large numbers
	The proofs of main results
	Conclusions
	Acknowledgements
	References


